摘要:
A method for soft switch call control and a soft switch device therefore are provided. The soft switch device acquires an initial address message (IAM) at a calling side, analyzes information of the calling party and the called party based on the acquired initial address message (IAM), and informs the media gateways to create a context and to add TDM semi-permanent physical terminations of time slots corresponding to the calling party and the called party into the context when the calling party and the called party are controlled by the same media gateway. Thus, it can implement a local loop of TDM voice, reduce IP loop of RTP streams and efficiently reduces network resources such as steps for digital signal processing, echo elimination and etc.
摘要:
A method for soft switch call control and a soft switch device therefore are provided. The soft switch device acquires an initial address message (IAM) at a calling side, analyzes information of the calling party and the called party based on the acquired initial address message (IAM), and informs the media gateways to create a context and to add TDM semi-permanent physical terminations of time slots corresponding to the calling party and the called party into the context when the calling party and the called party are controlled by the same media gateway. Thus, it can implement a local loop of TDM voice, reduce IP loop of RTP streams and efficiently reduces network resources such as steps for digital signal processing, echo elimination and etc.
摘要:
Methods and apparatus, including computer program products, for real-time and context-aware tracking of items. Tags bound to items are read and information read from the tags and location information about the tags is provided by at least two enterprises and used to maintain disposition information about the items, which is made visible to enterprises in the supply chain. The disposition information can be mapped to a world model that tracks the items and circumstances affecting the items, for example, geo-spatial events and traffic delays. Visibility of the disposition information can be controlled through authorization. Visible information can include relationships between particular items and business documents such as order and shipping documents.
摘要:
A current state of an item being tracked by an item-tracking system may be determined using prior state information about the item. To ensure proper temporal order of the state information, software events triggered by physical events associated with the item are received from a reader at an event interpretation system. A database or queue within the event interpretation system holds the software events for a delay time determined by a maximum transmission delay time of the software events. A sorter within the event interpretation system orders the software events relative to one another so as to correspond to an order of the physical events. An association model of the event interpretation system may determine state information related to the item for storage in a state information database. Accordingly, system exceptions in the item tracking system may be reduced, and an accuracy and reliability of the system may be improved.
摘要:
Session Inter-Device (SD) mobility networks (50, 100, 150) ate described in which a seamless transfer of a communication session from a first device (56, 106, 116) to a second device (66, 116, 166) can be achieved without interrupting the active session. According to the SID mobility network (50), the transfer can be accomplished by transferring away from the Transferring Node or first device (56) the IP address associated with the active session (58) so that the network (50) will route the session to the desired Target Node or second device (66). The Transferring Node (56) transfers its IP address (58) to the Agent (60) and stops requesting data packets addressed to its IP address (58). The Agent (60) then begins to request and eventually receive the packets addressed to the Transferring Node's IP address (58). The Agent (60) then transfers the packets to the Target Node (66). In an alternate SD mobility network (100), the Transferring Node (106) transfers a session specific IP address (114) to the Agent (110). The Agent (110) then transfers packets sent to the session specific IP address (114) to the Target Node (120). In another SID mobility network (150), the Transferring Node (162) obtains a temporary IP address (170) and transfers its IP address (164) to a Session Agent (166). The Session Agent (166) begins to request and eventually receive the packets addressed to the Transferring Node's IP address (164), and for each received packet determines if it belongs to the session the Transferring Node (162) requested to transfer to the Target Node (176). If it does, the Session Agent (166) will transfer the packet to the Target Node (176) at the Target Node's IP address (178). If it does not, the Session Agent (166) will transfer the packet to the Transferring Node (162) at its temporary IP address (170). In each SID mobility network, the session with respect to the Correspondent Node continues without interruption throughout the transfer, thereby providing a seamless transfer of the session from a first device to a second device.
摘要:
Session Inter-Device (SID) mobility networks (50, 100, 150) are described in which a seamless transfer of a communication session from a first device (56,106, 116) to a second device (66, 116, 166) can be achieved without interrupting the active session. According to the SID mobility network (50), the transfer can be accomplished by transferring away from the Transferring Node or first device (56) the IP address associated with the active session (58) so that the network (50) will route the session to the desired Target Node or second device (66). The Transferring Node (56) transfers its IP address (58) to the Agent (60) and stops requesting data packets addressed to its IP address (58). The Agent (60) then begins to request and eventually receive the packets addressed to the Transferring Node's IP address (58). The Agent (60) then transfers the packets to the Target Node (66). In an alternate SID mobility network (100), the Transferring Node (106) transfers a session specific IP address (114) to the Agent (110). The Agent (110) then transfers packets sent to the session specific IP address (114) to the Target Node (120). In another SID mobility network (150), the Transferring Node (162) obtains a temporary IP address (170) and transfers its IP address (164) to a Session Agent (166). The Session Agent (166) begins to request and eventually receive the packets addressed to the Transferring Node's IP address (164), and for each received packet determines if it belongs to the session the Transferring Node (162) requested to transfer to the Target Node (176). If it does, the Session Agent (166) will transfer the packet to the Target Node (176) at the Target Node's IP address (178). If it does not, the Session Agent (166) will transfer the packet to the Transferring Node (162) at its temporary IP address (170). In each SID mobility network, the session with respect to the Correspondent Node continues without interruption throughout the transfer, thereby providing a seamless transfer of the session from a first device to a second device.
摘要:
Methods and apparatus, including computer program products, for providing multiple enterprises real-time access to information about items in a supply chain. Tags bound to items are read and information read from the tags and location information about the tags is provided by at least two enterprises and used to maintain disposition information about the items, which is made visible to enterprises in the supply chain. The tags can be radio-frequency identification tags having each having an ePC (electronic product code) as unique tag identifier. Visibility of the disposition information can be controlled through authorization. Visible information can include relationships between particular items and business documents such as order and shipping documents. With shipping documents visible, information read from item tags can be used to confirm the identify or completeness of a shipment.
摘要:
Methods and apparatus, including computer program products, for real-time and context-aware tracking of items. Tags bound to items are read and information read from the tags and location information about the tags is provided by at least two enterprises and used to maintain disposition information about the items, which is made visible to enterprises in the supply chain. The disposition information can be mapped to a world model that tracks the items and circumstances affecting the items, for example, geo-spatial events and traffic delays. Visibility of the disposition information can be controlled through authorization. Visible information can include relationships between particular items and business documents such as order and shipping documents.
摘要:
Methods and apparatus, including computer program products, for real-time and context-aware tracking of items. Tags bound to items are read and information read from the tags and location information about the tags is provided by at least two enterprises and used to maintain disposition information about the items, which is made visible to enterprises in the supply chain. The disposition information can be mapped to a world model that tracks the items and circumstances affecting the items, for example, geo-spatial events and traffic delays. Visibility of the disposition information can be controlled through authorization. Visible information can include relationships between particular items and business documents such as order and shipping documents.
摘要:
A current state of an item being tracked by an item-tracking system may be determined using prior state information about the item. To ensure proper temporal order of the state information, software events triggered by physical events associated with the item are received from a reader at an event interpretation system. A database or queue within the event interpretation system holds the software events for a delay time determined by a maximum transmission delay time of the software events. A sorter within the event interpretation system orders the software events relative to one another so as to correspond to an order of the physical events. An association model of the event interpretation system may determine state information related to the item for storage in a state information database. Accordingly, system exceptions in the item tracking system may be reduced, and an accuracy and reliability of the system may be improved.