Abstract:
A method for operating a communications system includes transmitting a preamble sequence including a plurality of tones. Each tone of the plurality of tones has a first characteristic and a second characteristic. The first characteristic of each of the tones of the plurality of tones has a predetermined relative relationship to the first characteristic of each of the other tones of the plurality of tones and the second characteristic of each of the tones of the plurality of tones has a predetermined relative relationship to the second characteristic of each of the other tones of the plurality of tones. The first and second characteristics may include relative power and relative phase.
Abstract:
An apparatus includes a radio frequency (RF) receiver having a multi-bit observation interval. The RF receiver includes a Coordinate Rotation Digital Computer (Cordic) circuit to receive a complex signal derived from RF signals and to generate a phase signal. The RF receiver further includes a timing correlator and frequency offset estimator coupled to receive data derived from a frequency signal derived from the phase signal. The RF receiver in addition includes a Viterbi decoder coupled to provide decoded data derived from the frequency signal.
Abstract:
An apparatus includes a radio frequency (RF) receiver, which includes a digital signal arrival (DSA) detector to detect arrival of a transmitted signal. The DSA detector includes a signal correlator and at least one of (a) an absolute received signal strength indication (RSSI) detector; (b) a relative RSSI detector; and (c) a frequency offset detector). The RF receiver further includes a demodulator coupled to the DSA detector to demodulate a received signal and to provide a demodulated signal, and a synchronization word detector (SWD) coupled to the demodulator to receive the demodulated signal.
Abstract:
An apparatus includes a radio frequency (RF) receiver, which includes a digital signal arrival (DSA) detector to detect arrival of a transmitted signal. The DSA detector includes a signal correlator and at least one of (a) an absolute received signal strength indication (RSSI) detector; (b) a relative RSSI detector; and (c) a frequency offset detector). The RF receiver further includes a demodulator coupled to the DSA detector to demodulate a received signal and to provide a demodulated signal, and a synchronization word detector (SWD) coupled to the demodulator to receive the demodulated signal.
Abstract:
A method for operating a communications system includes transmitting a preamble sequence including a plurality of tones. Each tone of the plurality of tones has a first characteristic and a second characteristic. The first characteristic of each of the tones of the plurality of tones has a predetermined relative relationship to the first characteristic of each of the other tones of the plurality of tones and the second characteristic of each of the tones of the plurality of tones has a predetermined relative relationship to the second characteristic of each of the other tones of the plurality of tones. The first and second characteristics may include relative power and relative phase.
Abstract:
A method compensates for a frequency error in a communications system. The method includes detecting a received preamble sequence in a received signal. The received preamble sequence is detected based on a plurality of power estimates corresponding to a plurality of frequency bins of a received frequency domain signal and a plurality of relative phase errors corresponding to the plurality of frequency bins of the received frequency domain signal. The method includes determining the frequency error using the received preamble sequence. The method includes adjusting the receiver based on the frequency error.
Abstract:
An apparatus includes a radio frequency (RF) receiver having a multi-bit observation interval. The RF receiver includes a Coordinate Rotation Digital Computer (Cordic) circuit to receive a complex signal derived from RF signals and to generate a phase signal. The RF receiver further includes a timing correlator and frequency offset estimator coupled to receive data derived from a frequency signal derived from the phase signal. The RF receiver in addition includes a Viterbi decoder coupled to provide decoded data derived from the frequency signal.
Abstract:
An apparatus includes a radio frequency (RF) receiver, which includes a differentiator to differentiate a phase signal to generate a differentiated signal. The RF receiver further includes a correlator coupled to receive and correlate the differentiated signal, and a memory to receive and store the differentiated signal. Samples of the differentiated signal are provided to the correlator and to the memory synchronously.
Abstract:
An apparatus includes a radio frequency (RF) receiver, which includes a differentiator to differentiate a phase signal to generate a differentiated signal. The RF receiver further includes a correlator coupled to receive and correlate the differentiated signal, and a memory to receive and store the differentiated signal. Samples of the differentiated signal are provided to the correlator and to the memory synchronously.
Abstract:
An apparatus includes a radio frequency (RF) receiver, which includes a digital signal arrival (DSA) detector to detect arrival of a transmitted signal. The DSA detector includes a frequency discriminator to receive a signal derived from a received RF signal to generate a first complex signal. The DSA detector further includes a correlator coupled to receive and process the first complex signal and to generate a second complex signal. The DSA detector in addition includes a Coordinate Rotation Digital Computer (Cordic) circuit to receive and process the second complex signal to generate a phase signal and a magnitude signal.