Abstract:
According to some embodiments, a method includes selecting a length for an advanced television system committee (ATSC) 3.0 frame for transmission by a single frequency network (SFN) transmitter and aligning the SFN transmitter with a global positioning system (GPS) epoch. The method further includes storing geographical coordinates of the SFN transmitter and a corresponding SFN transmitter identification (TX ID) in a database. The method also includes encoding the SFN TX ID in a non-coherent symbol of a plurality of positioning navigation timing (PNT) symbols comprising a plurality of coherent symbols and the non-coherent symbol with orthogonal frequency-division multiplexing (OFDM) numerology to support positioning. The method further includes prepending the plurality of PNT symbols to the ATSC 3.0 frame to generate a modified ATSC 3.0 frame and transmitting the modified ATSC 3.0 using a SFN transmitter antenna of the SFN transmitter.
Abstract:
A new television broadcast model called a Broadcast Market Exchange (BMX) eliminates the inefficiency in spectrum usage, providing maximum flexibility in delivering content through either VHF (for fixed location receiving devices) or UHF (optimized for mobile receiving devices) transmission/propagation. In conjunction with the BMX, a wireless communications system architecture is provided to enable a broadcast augmentation channel. The augmentation channel provides supplementation of the Quality of Service (QoS) of a one way User Datagram Protocol (UDP) delivery environment. The augmentation channel may be comprised of one or more physical delivery mechanisms (wired or wireless), but can be effectively unified for increasing QoS and or scalable levels of service (additional essence) to improve the user experience.
Abstract:
A new television broadcast model called a Broadcast Market Exchange (BMX) eliminates the inefficiency in spectrum usage, providing maximum flexibility in delivering content through either VHF (for fixed location receiving devices) or UHF (optimized for mobile receiving devices) transmission/propagation. In conjunction with the BMX, a wireless communications system architecture is provided to enable a broadcast augmentation channel. The augmentation channel provides supplementation of the Quality of Service (QoS) of a one way User Datagram Protocol (UDP) delivery environment. The augmentation channel may be comprised of one or more physical delivery mechanisms (wired or wireless), but can be effectively unified for increasing QoS and or scalable levels of service (additional essence) to improve the user experience.
Abstract:
Systems and methods for one-way time transfer using physical layer signaling are disclosed herein. According to some examples, a method includes generating timing information based on a clock of a transmitting device, where the timing information comprises a timestamp and metadata. The method further includes generating a preamble of a frame, where the preamble includes the timestamp and the metadata of the timing information. The method also includes forming a frame, where the frame comprises a bootstrap, the preamble, and a payload, and transmitting the frame to a receiver device. The one-way time transfer systems and methods of this disclosure can serve mobile devices that entail quick and reliable establishment of a clock.
Abstract:
A method disclosed includes receiving data from a plurality of data sources in a broadcast core network for transmission over a radio access network (RAN). The method includes assigning radio spectrum resources for transmitting the data over the RAN according to a policy guidance set by a plurality of network operators for sharing the radio spectrum resources and generating a baseband packet corresponding to the data at a distributed unit (DU) in the RAN. The method includes collecting transmission data from a plurality of user equipments (UEs) in the RAN for training a machine learning algorithm and scheduling transmission of the generated baseband packet to a remote unit (RU) over a fronthaul in a radio topology of a plurality of radio topologies under control of the machine learning algorithm according to the policy guidance. The generated baseband packet is compatible for transmission in the plurality of radio technologies.
Abstract:
Systems and methods for relaying in broadcast single-frequency networks are disclosed herein. A single-frequency network can be formed in part using transmitters that receive data via a cooperative relay channel instead of a studio-to-transmitter link. In some embodiments, transmitter may use a portion of its transmission time to relay in-band information to the single-frequency network transmitter using time-division multiplexing.
Abstract:
A new television broadcast model called a Broadcast Market Exchange (BMX) eliminates the inefficiency in spectrum usage, providing maximum flexibility in delivering content through either VHF (for fixed location receiving devices) or UHF (optimized for mobile receiving devices) transmission/propagation. In conjunction with the BMX, a wireless communications system architecture is provided to enable a broadcast augmentation channel. The augmentation channel provides supplementation of the Quality of Service (QoS) of a one way User Datagram Protocol (UDP) delivery environment. The augmentation channel may be comprised of one or more physical delivery mechanisms (wired or wireless), but can be effectively unified for increasing QoS and or scalable levels of service (additional essence) to improve the user experience.
Abstract:
The ATSC 3.0 physical layer broadcast standard is extended with new OFDM numerology, L1 signaling and frame structure aligned with 5G. This is done to enable improved broadcast mobility and convergence 5G release 16 as a Non-3GPP access network. The 5G core network and Broadcast core network interwork over defined interfaces to enable convergence layer 3. This enables improvements of broadcast physical layer for physics of broadcast. The 5G unicast physical layer is enhanced for physics of unicast, and then both are converged at layer 3. This is novel and has many benefits compared to the legacy LTE broadcast method (e.g., Evolved Multimedia Broadcast Multicast Services (eMBMS)), which combines both broadcast and unicast into a single shared LTE frame at layer 1. The eMBMS method is then improved for dominate unicast mode in shared L1 frame. The result is the broadcast performance and efficiency in eMBMS are less than optimal.
Abstract:
An apparatus and a method are provided for generating and transmitting one or more band segmented bootstrap signals. For example, a transmitter may be configured to generate a plurality of sequence numbers and apply cyclic shift to each of the plurality of sequence number. The transmitter is further configured to map each of the shifted sequence numbers to at least one frequency domain subcarrier of a plurality of frequency domain subcarriers, and translate each subcarrier of the plurality of subcarriers to a time domain sequence. Each subcarrier of the plurality of subcarriers may be shifted with respect to other subcarriers of the plurality of subcarriers, thereby aligning each segment of the band segmented bootstrap signals next to each other in the frequency domain.
Abstract:
A Next Generation Broadcast Platform (NGBP) is disclosed that utilizes 5G software-defined networking (SDN) and network function virtualization (NFV) technologies. The NGBP is designed to enable a new paradigm for broadcasters, wherein the model of fixed wireless spectrum access granted only to the licensees of the spectrum is replaced by a flexible model in which licensed spectrum is pooled together and allocated dynamically to broadcast licensees as well as outside tenants. The NGBP is implemented using SDN/NFV technology, and includes a broadcast market exchange (BMX) entity that allocates the spectrum between tenants based on service level agreements (SLAs) with those users. The NGBP also includes an internet protocol (IP) core and a broadcast centralized radio access network (BC-RAN) which apply the major network functions to broadcaster content in accordance with the determinations of the BMX. The SDN/NFV implementation offers several distinct advantages over NGBP implemented with dedicated network hardware.