摘要:
A method for improving the reliability and performance of Vehicle-to-Vehicle (V2V) networks where digital certificates are necessary for message authentication and some messages may be lost in transmission. The method uses Forward Error Correcting (FEC) codes to encode a digital certificate into multiple segments, and attaches one or more segment to each message transmitted. Nodes receiving the messages can reconstruct the certificate as long as they successfully receive a minimum number of the transmitted messages, where the minimum number is less than the total number of messages transmitted. This allows message authentication to continue uninterrupted, even in a network environment where some messages are lost in transmission. Two different types of FEC codes are described, and adaptive schemes are included to optimize message throughput based on such network conditions as node density.
摘要:
A method is provided for generating on-demand cryptographic keys in a vehicle-to-vehicle communication system. At least one unique identifier is obtained relating to a user of the vehicle. The host vehicle generates cryptographic keys for encrypting, decrypting, and authenticating secured messages between the host vehicle and at least one remote vehicle in the vehicle-to-vehicle communication system. The cryptographic keys are generated as a function of the at least one unique identifier. A respective cryptographic key used to decrypt or encrypt messages communicated between the host vehicle and the at least one remote entity is temporarily stored in a memory device of the host vehicle. The host vehicle utilizes the respective cryptographic key to decrypt or encrypt a secure message transmitted between the host vehicle and the remote vehicle. The respective cryptographic key temporarily stored in the memory device of the host vehicle is deleted after the vehicle-to-vehicle communications of the host vehicle is disabled.
摘要:
A method for securing communications in a vehicle-to-vehicle (V2V) system including an on-board computer of a broadcasting vehicle predicting a value for a vehicle parameter, generating a heavyweight signature corresponding to the predicted value, and obtaining an actual value for the vehicle parameter. The method also includes the computer comparing the predicted value to the actual value to determine if the predicted value bears a first relationship to the actual value. If the computer determines that the predicted value bears the relationship to the actual value, the on-board computer generates a lightweight authenticating signature to correspond to the predicted value and broadcasts a data message having the predicted value with the corresponding heavyweight authenticating signature and the corresponding lightweight authenticating signature.
摘要:
A method for securing communications in a vehicle-to-vehicle (V2V) system including an on-board computer of a broadcasting vehicle predicting a value for a vehicle parameter, generating a heavyweight signature corresponding to the predicted value, and obtaining an actual value for the vehicle parameter. The method also includes the computer comparing the predicted value to the actual value to determine if the predicted value bears a first relationship to the actual value. If the computer determines that the predicted value bears the relationship to the actual value, the on-board computer generates a lightweight authenticating signature to correspond to the predicted value and broadcasts a data message having the predicted value with the corresponding heavyweight authenticating signature and the corresponding lightweight authenticating signature.
摘要:
A method for improving the reliability and performance of Vehicle-to-Vehicle (V2V) networks where digital certificates are necessary for message authentication and some messages may be lost in transmission. The method uses Forward Error Correcting (FEC) codes to encode a digital certificate into multiple segments, and attaches one or more segment to each message transmitted. Nodes receiving the messages can reconstruct the certificate as long as they successfully receive a minimum number of the transmitted messages, where the minimum number is less than the total number of messages transmitted. This allows message authentication to continue uninterrupted, even in a network environment where some messages are lost in transmission. Two different types of FEC codes are described, and adaptive schemes are included to optimize message throughput based on such network conditions as node density.
摘要:
A method for improving the reliability and performance of Vehicle-to-Vehicle (V2V) networks where digital certificates are necessary for message authentication and some messages may be lost in transmission. The method uses a variable inter-certificate refresh period to optimize communications throughput based on network conditions such as node density and bandwidth saturation. In some network conditions, the inter-certificate refresh period may be increased, such that more certificate digests are sent between full digital certificates, to decrease average message size. In other network conditions, the inter-certificate refresh period may be decreased, to allow for more frequent message authentication by receiving nodes. Empirical data and an adaptive controller are used to select the refresh period which will provide the best performance based on network conditions.
摘要:
A method is provided for generating on-demand cryptographic keys in a vehicle-to-vehicle communication system. At least one unique identifier is obtained relating to a user of the vehicle. The host vehicle generates cryptographic keys for encrypting, decrypting, and authenticating secured messages between the host vehicle and at least one remote vehicle in the vehicle-to-vehicle communication system. The cryptographic keys are generated as a function of the at least one unique identifier. A respective cryptographic key used to decrypt or encrypt messages communicated between the host vehicle and the at least one remote entity is temporarily stored in a memory device of the host vehicle. The host vehicle utilizes the respective cryptographic key to decrypt or encrypt a secure message transmitted between the host vehicle and the remote vehicle. The respective cryptographic key temporarily stored in the memory device of the host vehicle is deleted after the vehicle-to-vehicle communications of the host vehicle is disabled.
摘要:
A method for improving the reliability and performance of Vehicle-to-Vehicle (V2V) networks where digital certificates are necessary for message authentication and some messages may be lost in transmission. The method uses a variable inter-certificate refresh period to optimize communications throughput based on network conditions such as node density and bandwidth saturation. In some network conditions, the inter-certificate refresh period may be increased, such that more certificate digests are sent between full digital certificates, to decrease average message size. In other network conditions, the inter-certificate refresh period may be decreased, to allow for more frequent message authentication by receiving nodes. Empirical data and an adaptive controller are used to select the refresh period which will provide the best performance based on network conditions.
摘要:
A method is provided for efficiently processing messages staged for authentication in a security layer of a protocol stack in a wireless vehicle-to-vehicle communication system. The vehicle-to-vehicle communication system includes a host vehicle receiver for receiving messages transmitted by one or more remote vehicles. The host receiver is configured to authenticate received messages in a security layer of a protocol stack. A wireless message broadcast by a remote vehicle is received. The wireless message contains characteristic data of the remote vehicle. The characteristic data is analyzed for determining whether the wireless message is in compliance with a predetermined parameter of the host vehicle. The wireless message is discarded prior to a transfer of the wireless message to the security layer in response to a determination that the wireless message is not in compliance with the predetermined parameter of the host vehicle. Otherwise, the wireless message is transferred to the security layer.