Abstract:
An M-channel (M is an integer of at least two) synchronous rectification type step-down DC/DC converter is provided. A controller in the converter (i) calculates a load current on a basis of currents flowing through M inductors, (ii) dynamically changes the number K of driving phases (K is an integer of up to M) on the basis of the calculated load current, (iii) generates a pulse signal adjusted in duty ratio such that an output voltage of an output line coincides with a predetermined reference voltage, (iv) selects K drivers among M drivers, and distributes the pulse signal with a phase difference of (360/K) degrees to each of the selected K drivers, and (v) monotonically increases an amplitude control signal indicating the amplitude of a gate driving voltage with respect to the calculated load current in a range determined in advance for each number K of driving phases.
Abstract:
An M-channel (M is an integer of at least two) synchronous rectification type step-down DC/DC converter is provided. A controller in the converter (i) calculates a load current on a basis of currents flowing through M inductors, (ii) dynamically changes the number K of driving phases (K is an integer of up to M) on the basis of the calculated load current, (iii) generates a pulse signal adjusted in duty ratio such that an output voltage of an output line coincides with a predetermined reference voltage, (iv) selects K drivers among M drivers, and distributes the pulse signal with a phase difference of (360/K) degrees to each of the selected K drivers, and (vi) monotonically increases an amplitude control signal indicating the amplitude of a gate driving voltage with respect to the calculated load current in a range determined in advance for each number K of driving phases.
Abstract:
Based upon a detection voltage VL that develops between ISEN+ and ISEN− terminals, a current detection circuit detects a coil current IL that flows through an inductor. A measurement circuit is connected to an inductor, and measures an inductance value L and a DC resistance value RDC of the inductor in a calibration operation before normal operation of a DC/DC converter. Based upon the inductance value L and the DC resistance value RDC thus measured, the current detection circuit detects the coil current IL using the detection voltage VL.
Abstract:
The present disclosure is to provide a DC/DC converter capable of suppressing increase in the ripple amount of the output voltage in association with switching of the number of drive phases. N (N is an integer equal to or larger than 2) switching circuits each generate a switching voltage at the switching node according to an input pulse signal. A phase controller dynamically switches the number K (K is an integer equal to or smaller than N) of drive phases according to the state of a DC/DC converter at the time. A pulse modulator generates a pulse signal whose frequency changes according to the number K of drive phases. A distributor selects K switching circuits among the N switching circuits and distributes the pulse signal to each of the selected K switching circuits with a phase difference of (360/K) degrees.
Abstract:
The present disclosure is to provide a DC/DC converter capable of suppressing increase in the ripple amount of the output voltage in association with switching of the number of drive phases. N (N is an integer equal to or larger than 2) switching circuits each generate a switching voltage at the switching node according to an input pulse signal. A phase controller dynamically switches the number K (K is an integer equal to or smaller than N) of drive phases according to the state of a DC/DC converter at the time. A pulse modulator generates a pulse signal whose frequency changes according to the number K of drive phases. A distributor selects K switching circuits among the N switching circuits and distributes the pulse signal to each of the selected K switching circuits with a phase difference of (360/K) degrees.