Abstract:
There is provided a radiation detector including: a plurality of photoelectric conversion devices, each photoelectric conversion device formed at least partially within an embedding layer and having a light receiving surface situated at least partially outside of the embedding layer, and a plurality of scintillator crystals, at least a first scintillator crystal of the plurality of scintillator crystals in contact with at least one light receiving surface at a proximal end, wherein a cross-section of the first scintillator crystal at the proximal end is smaller than a cross-section of the first scintillator crystal at a distal end.
Abstract:
A method of manufacturing a mounting substrate according to an embodiment of the present technology includes the following three steps:(1) a step of forming a plurality of electrodes on a semiconductor layer, and thereafter forming one of solder bumps at a position facing each of the electrodes;(2) a step of covering the solder bumps with a coating layer, and thereafter selectively etching the semiconductor layer with use of the coating layer as a mask to separate the semiconductor layer into a plurality of elements; and(3) a step of removing the coating layer, and thereafter mounting the elements on a wiring substrate to direct the solder bumps toward the wiring substrate, thereby forming the mounting substrate.
Abstract:
A method of manufacturing a mounting substrate according to an embodiment of the present technology includes the following three steps: (1) a step of forming a plurality of electrodes on a semiconductor layer, and thereafter forming one of solder bumps at a position facing each of the electrodes; (2) a step of covering the solder bumps with a coating layer, and thereafter selectively etching the semiconductor layer with use of the coating layer as a mask to separate the semiconductor layer into a plurality of elements; and (3) a step of removing the coating layer, and thereafter mounting the elements on a wiring substrate to direct the solder bumps toward the wiring substrate, thereby forming the mounting substrate.
Abstract:
There is provided a radiation detector including: a plurality of photoelectric conversion devices, each photoelectric conversion device formed at least partially within an embedding layer and having a light receiving surface situated at least partially outside of the embedding layer, and a plurality of scintillator crystals, at least a first scintillator crystal of the plurality of scintillator crystals in contact with at least one light receiving surface at a proximal end, wherein a cross-section of the first scintillator crystal at the proximal end is smaller than a cross-section of the first scintillator crystal at a distal end.