Abstract:
A blood processing apparatus may include a heat exchanger and a gas exchanger. At least one of the heat exchanger and the gas exchanger may be configured to impart a radial component to blow flow through the heat exchanger and/or gas exchanger. The heat exchanger may be configured to cause blood flow to follow a spiral flow path.
Abstract:
A purger device for hollow fiber oxygenators, including a gas inlet, a gas outlet, and a fluid communication feature between the gas inlet and the gas outlet. The purger device further including an accumulation chamber having a variable volume plenum ported to the fluid communication feature, and a flow control unit configured to vary fluid communication patterns in the fluid communication feature and having a first operating condition and a second operating condition, wherein in the first operating condition the flow control unit enables a fluid communication between the gas inlet and gas outlet, and wherein in the second operating condition the flow control unit enables a fluid communication between the gas inlet and the variable volume plenum of the accumulation chamber.
Abstract:
An oxygenator combines, in a single structure, a heat exchanger, a gas exchanger, an arterial filter, and a filter frame. Such an oxygenator permits fewer fluid connections and thus may simplify an extracorporeal blood circuit, including a heart-lung machine and a blood reservoir, in which it is used. In some embodiments, the oxygenator may be configured to include multiple purge ports for purging bubbles both before and after filtering the blood.
Abstract:
An apparatus includes a blood-flow-management assembly shaped to define a cylindrical aperture. The blood-flow-management assembly includes a blood collector having drainage holes configured to direct blood to a guide surface positioned below the blood collector. The guide surface may further include ribs that manage blood flow along the guide surface.
Abstract:
An apparatus includes a blood-flow-management assembly shaped to define a cylindrical aperture. The blood-flow-management assembly includes a blood collector having drainage holes configured to direct blood to a guide surface positioned below the blood collector. The guide surface may further include ribs that manage blood flow along the guide surface.
Abstract:
A blood processing apparatus may include a heat exchanger and a gas exchanger. At least one of the heat exchanger and the gas exchanger may be configured to impart a radial component to blow flow through the heat exchanger and/or gas exchanger. The heat exchanger may be configured to cause blood flow to follow a spiral flow path.
Abstract:
A system for removing gaseous micro emboli from blood prior to oxygenation. The system including a module having a blood inlet, a blood outlet, and a port configured to provide atmospheric or sub-atmospheric pressures, and microporous hollow fibers situated in the module and fluidly coupled to the port to provide the atmospheric or sub-atmospheric pressures inside the microporous hollow fibers. The module is configured to receive the blood through the blood inlet such that the blood flows from the blood inlet to the blood outlet around outside surfaces of the microporous hollow fibers such that at least some of the gaseous micro emboli in the blood are drawn from the blood through the microporous hollow fibers by the atmospheric or sub-atmospheric pressures.
Abstract:
An apparatus includes a blood-flow-management assembly shaped to define a cylindrical aperture. The blood-flow-management assembly includes a blood collector having drainage holes configured to direct blood to a guide surface positioned below the blood collector. The guide surface may further include ribs that manage blood flow along the guide surface.
Abstract:
A venous reservoir including a single inlet line clamp capable of partially or completely restricting blood flow to the venous reservoir. The venous reservoir is provided with a rigid back plate or bracket that can accommodate an inlet line capable of joining to at least one blood inlet port. The rigid back plate or bracket can accommodate a clamp capable of completely or partially closing the inlet line containing both the cardiotomy line and the venous line to manually control the blood flow drained from the patient.
Abstract:
An oxygenator combines, in a single structure, a heat exchanger, a gas exchanger, an arterial filter, and a filter frame. Such an oxygenator permits fewer fluid connections and thus may simplify an extracorporeal blood circuit, including a heart-lung machine and a blood reservoir, in which it is used. In some embodiments, the oxygenator may be configured to include multiple purge ports for purging bubbles both before and after filtering the blood.