Abstract:
A mobile communication device provisioning and management system is provided. The system comprises a computer system and an application, that when executed on the computer system, receives instructions for provisioning a set of mobile communication devices, the instructions comprising a range of unique identifiers and user roles associated with the set. The system also receives a first message from a first mobile communication device, the first message containing a request for provisioning, a first unique identifier, a first user role, and a first user identifier. The system also matches the first unique identifier embedded in the first message with a unique identifier contained in the instructions. The system also matches the user role received in the first message with a user role specified in the instructions and sends a second message to the first mobile communication device, the second message containing provisioning information. The system also stores a record associating the first unique identifier, the first user role, and the first user identifier.
Abstract:
An unmanned aerial vehicle (UAV) is disclosed. The UAV comprises a battery, a flight mechanism, a radio frequency (RF) transceiver, a processor, a memory, and an application stored in the memory. When executed by the processor, the application discovers an environment where the UAV operates by flying in the environment to determine its boundaries; creates a map of the environment that the UAV flew through; and shares the map with a social robot. The application receives a command from the social robot via the RF transceiver, wherein the social robot receives a verbal request from a user of the social robot, wherein the social robot transforms the user request to a command for the UAV. The application then performs the command from the social robot. The application then lands on a designated charging pad to conserve energy. The application then transmits a report back to the social robot.
Abstract:
An unmanned aerial vehicle (UAV) is disclosed. The UAV comprises a battery, a flight mechanism, a radio frequency (RF) transceiver, a processor, a memory, and an application stored in the memory. When executed by the processor, the application discovers an environment where the UAV operates by flying in the environment to determine its boundaries; creates a map of the environment that the UAV flew through; and shares the map with a social robot. The application receives a command from the social robot via the RF transceiver, wherein the social robot receives a verbal request from a user of the social robot, wherein the social robot transforms the user request to a command for the UAV. The application then performs the command from the social robot. The application then lands on a designated charging pad to conserve energy. The application then transmits a report back to the social robot.
Abstract:
A method of synchronizing robot motion with a social interaction. The method comprises storing in the robot a map that associates keywords with at least one robot motion, composing by the robot a dialogue based on a context of a social interaction with a human being, searching the dialogue for keywords, parsing the dialogue to determine its syntax, and analyzing the syntax. The method further comprises generating, by the robot, a robot motion script synchronized with the dialogue based on mapping one or more keywords located in the dialogue to robot motions, based on the syntax of the dialogue, and based on a physical cadence, wherein the robot motion script comprises a sequence of separate robot motions. The method further comprises playing aloud the dialogue by the robot and performing the robot motion script by the robot in synchronization with the playing aloud of the dialogue.