Abstract:
A wireless access node serves wireless user devices with different services over a common radio channel. The different services are supported by different wireless network slices. The wireless access node determines service subchannels in the radio channel based on location and time. The wireless access node schedules resource blocks from the subchannels for their corresponding services. If a subchannel for one service is full, then the wireless access node schedules the remaining data for the service in the unscheduled resource blocks of the other subchannels if any. The wireless access node wirelessly exchanges data for the services with the wireless user devices over the scheduled resource blocks in the subchannels of the radio channel. The wireless access node exchanges the data with the wireless network slices that support the services.
Abstract:
A battery-powered wireless communication device has internal antennas. In the wireless communication device, transceiver circuitry wirelessly receives external antenna data that indicates on/off status, reserve battery power, and geometric earth-orientation for the individual antennas in a different wireless communication device. Baseband circuitry determines internal antenna data that indicates the on/off status, reserve battery power, and geometric earth-orientation for the internal antennas. The baseband circuitry executes a user application that generates and consumes user data. The baseband circuitry selects a set of the internal antennas to serve the user application based on the internal antenna data and the external antenna data. The transceiver circuitry wirelessly exchanges the user data over the selected set of the internal antennas.
Abstract:
Wireless communication devices have antennas, and the antennas have earth-orientations. The wireless devices exchange network signaling with a wireless access node over the antennas. Some of network signaling indicates Device-to-Device (D2D) communication times and frequencies. The wireless communication devices exchange device signaling with each other over the antennas using the D2D communication times and frequencies. Some of the device signaling indicates the earth orientations for the antennas. The wireless communication devices select a subset of the antennas based on the earth orientations. The wireless communication devices exchange user data with each other over the selected subset of antennas using the D2D communication times and frequencies.
Abstract:
A battery-powered wireless communication device has internal antennas. In the wireless communication device, transceiver circuitry wirelessly receives external antenna data that indicates on/off status, reserve battery power, and geometric earth-orientation for the individual antennas in a different wireless communication device. Baseband circuitry determines internal antenna data that indicates the on/off status, reserve battery power, and geometric earth-orientation for the internal antennas. The baseband circuitry executes a user application that generates and consumes user data. The baseband circuitry selects a set of the internal antennas to serve the user application based on the internal antenna data and the external antenna data. The transceiver circuitry wirelessly exchanges the user data over the selected set of the internal antennas.
Abstract:
A method, system, and medium are provided for improving uplink performance of an antenna array configured for downlink beam forming. Beam forming requires an antenna element spacing that results in correlated downlink signals. Uplink reception preferably uses an element spacing such that uplink signals are uncorrelated. For an eight-element antenna configured for beam forming, using eight-branch combining to produce a single resultant signal is thus less than optimal. In an embodiment, non-adjacent elements in the antenna array, which receive uncorrelated signals, may be combined in pairs with two-branch combining. The four resultant signals may then be combined using four-branch combining to provide a single resultant signal.
Abstract:
A system for broadcasting a telecommunications signal is configured to detect the use of an improper filter, and/or also, the presence of an improper return signal from a filter. The system includes a broadcast cell having a signal generation component and a signal transmitting component, a filter through which the signal generated by the signal generation component is sent, and a directional coupler that diverts a portion of a return signal reflected from the filter back to the broadcast cell away from the broadcast cell to a detector, the detector configured to determine when the return signal is at least a minimum level, or within a range, that indicates use of an improper filter or the presence of an improper return signal, allowing modification of the system or notification of the conditions, in certain circumstances.
Abstract:
A method, system, and medium are provided for improving uplink performance of an antenna array configured for downlink beam forming. Beam forming requires an antenna element spacing that results in correlated downlink signals. Uplink reception preferably uses an element spacing such that uplink signals are uncorrelated. For an eight-element antenna configured for beam forming, using eight-branch combining to produce a single resultant signal is thus less than optimal. In an embodiment, non-adjacent elements in the antenna array, which receive uncorrelated signals, may be combined in pairs with two-branch combining. The four resultant signals may then be combined using four-branch combining to provide a single resultant signal.
Abstract:
Systems and methods are provided for improving uplink coverage in a wireless communication network. A first correlated array and a second correlate array each comprise a plurality of antenna elements. Each correlated array has an inter-element spacing of one wavelength of a signal for which the array is configured to receive. The first and second correlated arrays are interleaved such that one-half of a wavelength of a signal for which at least one of the correlated arrays is configured to receive separates adjacent elements of the first and second correlated arrays. Signals received by each correlated array are combined using statistical signal processing techniques to create combined signals that may be provided to the wireless communication network. Combining uplink signals from at least two interleaved uncorrelated arrays may increase the effective spacing of each array without sacrificing base station space or throughput.
Abstract:
An Orthogonal Frequency Division Multiplexing (OFDM) access point receives and processes beamforming feedback data from User Equipment (UE) to form a beamforming feedback loop, transmits a beamformed radio signal to the UE, and determines if the beamforming feedback loop is experiencing a beamforming lag condition, and if so, switches to a closed-loop spatial multiplexing transmit protocol. The OFDM access point receives and processes closed-loop spatial multiplexing feedback data from the UE to form a closed-loop spatial multiplexing feedback loop, transmits a closed-loop spatial multiplexed radio signal to the UE, and determines if the closed-loop spatial multiplexing feedback loop is experiencing a spatial multiplexing lag condition, and if so, switches to an open-loop spatial multiplexing transmit protocol. An OFDM access point receives and processes open-loop spatial multiplexing feedback data from the UE to form an open-loop spatial multiplexing feedback loop and transmits an open-loop spatial multiplexed radio signal to the UE.
Abstract:
Wireless communication devices have antennas, and the antennas have earth-orientations. The wireless devices exchange network signaling with a wireless access node over the antennas. Some of network signaling indicates Device-to-Device (D2D) communication times and frequencies. The wireless communication devices exchange device signaling with each other over the antennas using the D2D communication times and frequencies. Some of the device signaling indicates the earth orientations for the antennas. The wireless communication devices select a subset of the antennas based on the earth orientations. The wireless communication devices exchange user data with each other over the selected subset of antennas using the D2D communication times and frequencies.