Abstract:
A wireless communication system includes a plurality of Content Aware Routers (CARs) to facilitate a User Equipment (UE) handover. A source CAR exchanges communication data with a UE over a source wireless access point using Information Centric Network (ICN) routing. A target CAR receives a notification of the UE handover, requests the communication data for the UE, and receives subsequent data communication for the UE. The target CAR exchanges communication data with the UE over a target wireless access point using ICN routing.
Abstract:
Systems, methods, and software for selecting frequency bands in wireless communication networks are provided herein. In one example, a method of operating a wireless communication system is provided. The method includes, in the wireless communication device, exchanging wireless communications with the wireless network over the throughput frequency band, tracking mobility status of the wireless communication device to determine if the mobility status satisfies a mobility condition, and responsively transferring a mobility mode indication to the wireless network. The method also includes, in the wireless network, receiving the mobility mode indication and transitioning the wireless communication device to the mobility frequency band from the throughput frequency band. The method also includes, in the wireless communication device, responsive to transitioning from the throughput frequency band to the mobility frequency band, exchanging wireless communications with the wireless network over the mobility frequency band.
Abstract:
A method and system for assigning data packet transmission in a wireless communications network is provided. The method comprises receiving first and second user data packets having respective first and second packet sizes, one of the packet sizes being larger than the other, determining an uplink/downlink ratio based on network statistics, and assigning the first and second data packets to respective first and second signal carrier spectrums each having a different time interval between uplink transmissions with the network. A system is also provided comprising a network controller configured to receive data packets and assign individual data packets to one of a first and a second signal carrier spectrum based on the size of the data packets, the first and the second signal carrier spectrums having the same uplink/downlink ratio and different uplink intervals.
Abstract:
The invention is directed to methods and systems for maximizing bandwidth utilization. Once a mobile device has attempted to communicate data through an LTE-based wireless communications network, a carrier bandwidth of a carrier is determined. A standard cell structure is then selected based on the carrier bandwidth such that the standard cell structure is capable of operating at a larger bandwidth than the carrier bandwidth. One or more resource blocks are identified that are not needed to communicate data to and from the mobile device. These resource blocks are zero padded. An identification of these unused resource blocks is communicated to the master information block, which broadcasts this information to the mobile device.
Abstract:
A wireless communication transmitter converts the user data into static user data symbols and dynamic user data symbols. The wireless communication transmitter wirelessly transmits the dynamic user data symbols over user data resource elements and wirelessly transmits the static user data symbols over reference signal resource elements. A wireless communication receiver wirelessly receives the dynamic user data symbols over the user data resource elements and wirelessly receives the static user data symbols over the reference signal resource elements. The wireless communication receiver determines a wireless channel status condition based on the static user data symbols received over the reference signal resource elements. The wireless communication receiver generates a user data block including the user data from the dynamic user data symbols and the static user data symbols.
Abstract:
A method and system for providing MU-MIMO pairings of mobile handsets in a network is provided. In one embodiment, the method includes facilitating MU-MIMO pairings of mobile handsets served by different transmitting/receiving components serving individual sectors of a base station using a central monitoring server and location information for each of the mobile handsets. In another embodiment, the method includes facilitating MU-MIMO pairings between mobile handsets served by different transmitting/receiving components in different sectors of coverage across separate access components using a central monitoring server and location information for each of the mobile handsets.
Abstract:
A method and system for assigning data packet transmission in a wireless communications network is provided. The method comprises receiving first and second user data packets having respective first and second packet sizes, one of the packet sizes being larger than the other, determining an uplink/downlink ratio based on network statistics, and assigning the first and second data packets to respective first and second signal carrier spectrums each having a different time interval between uplink transmissions with the network. A system is also provided comprising a network controller configured to receive data packets and assign individual data packets to one of a first and a second signal carrier spectrum based on the size of the data packets, the first and the second signal carrier spectrums having the same uplink/downlink ratio and different uplink intervals.
Abstract:
A method and system for providing MU-MIMO pairings of mobile handsets in a network is provided. In one embodiment, the method includes facilitating MU-MIMO pairings of mobile handsets served by different transmitting/receiving components serving individual sectors of a base station using a central monitoring server and location information for each of the mobile handsets. In another embodiment, the method includes facilitating MU-MIMO pairings between mobile handsets served by different transmitting/receiving components in different sectors of coverage across separate access components using a central monitoring server and location information for each of the mobile handsets.
Abstract:
The invention is directed to methods and systems for maximizing bandwidth utilization. Once a mobile device has attempted to communicate data through an LTE-based wireless communications network, a carrier bandwidth of a carrier is determined. A standard cell structure is then selected based on the carrier bandwidth such that the standard cell structure is capable of operating at a larger bandwidth than the carrier bandwidth. One or more resource blocks are identified that are not needed to communicate data to and from the mobile device. These resource blocks are zero padded. An identification of these unused resource blocks is communicated to the master information block, which broadcasts this information to the mobile device.