Abstract:
Disclosed herein are methods and systems that may help a WiMAX base station function without a GPS signal by providing a high-stability reference signal via a subcarrier of a broadcast signal, such as an FM radio signal. An exemplary broadcast station may therefore be configured to phase-lock a subcarrier signal to a GPS signal, and include this subcarrier in its broadcast signal, thereby providing the subcarrier signal for use by a base station as a high-stability reference signal for local-oscillator stabilization at the base station. The broadcast station may further modulate a timing signal onto the subcarrier signal. An exemplary base station may therefore receive the broadcast signal, decode the broadcast signal to acquire the subcarrier signal, and use the subcarrier signal to stabilize its local oscillator, rather than using a GPS signal. The base station may further demodulate the subcarrier to acquire the timing signal, which the base station may use for frame-start synchronization, instead of a GPS signal.
Abstract:
Disclosed herein are methods and systems that may help a base station provide high-speed data communication under a protocol such as LTE or WiMAX, even when a GPS signal is not available to the base station.
Abstract:
Disclosed herein are methods and systems that may help a base station provide high-speed data communication under a protocol such as LTE or WiMAX, even when a GPS signal is not available to the base station. In an exemplary embodiment, a base station may acquire a high-stability reference signal via a subcarrier of a terrestrial broadcast signal, such as an FM radio signal, and may coordinate the timing frame transmissions with other nearby base stations, instead of relying upon a GPS signal for such functionality.
Abstract:
Disclosed herein are methods and systems that may help a base station provide high-speed data communication under a protocol such as LTE or WiMAX, even when a GPS signal is not available to the base station. In an exemplary embodiment, a base station may acquire a high-stability reference signal via a subcarrier of a terrestrial broadcast signal, such as an FM radio signal, and may coordinate the timing frame transmissions with other nearby base stations, instead of relying upon a GPS signal for such functionality.
Abstract:
Disclosed herein are methods and systems that may help a WiMAX base station function without a GPS signal by providing a high-stability reference signal via a subcarrier of a broadcast signal, such as an FM radio signal. An exemplary broadcast station may therefore be configured to phase-lock a subcarrier signal to a GPS signal, and include this subcarrier in its broadcast signal, thereby providing the subcarrier signal for use by a base station as a high-stability reference signal for local-oscillator stabilization at the base station. The broadcast station may further modulate a timing signal onto the subcarrier signal. An exemplary base station may therefore receive the broadcast signal, decode the broadcast signal to acquire the subcarrier signal, and use the subcarrier signal to stabilize its local oscillator, rather than using a GPS signal. The base station may further demodulate the subcarrier to acquire the timing signal, which the base station may use for frame-start synchronization, instead of a GPS signal.