摘要:
In an aspect, a computer-implemented method for managing active read and write data routing and placement policy overview in an application-oriented system comprising: when an application issues a write operation, a writeback system of the application-oriented system writes the data only in the Virtual Element (VE) of the cache Virtual Storage Objects (VSTO) and not on another capacity layer VSTO; when an application issues an attribute write operation or metadata write operation, a writeback system of the application oriented system executes the attribute write operation in an appropriate Meta chunk Virtual Element (VE) of the cache VSTO only and not on another capacity layer VSTO; and persistently implementing a metadata change only in the Meta chunk VE.
摘要:
In an embodiment, a mapping method of an accelerated application-oriented middleware layer is provided. The method includes, using a first mapper, determining for an input output operation whether a data storage location has been designated for storing a corresponding data in a virtual storage object, the input output operation involving the corresponding data. The method further includes, using the first mapper and at least one processor, acquiring the virtual element identification of the corresponding data. The method also includes, using the virtual element identification and the corresponding data, performing the input output operation.
摘要:
The present invention implements an I/O task architecture in which an I/O task requested by the storage manager, for example a stripe write, is decomposed into a number of lower-level asynchronous I/O tasks that can be scheduled independently. Resources needed by these lower-level I/O tasks are dynamically assigned, on an as-needed basis, to balance the load and use resources efficiently, achieving higher scalability. A hierarchical order is assigned to the I/O tasks to ensure that there is a forward progression of the higher-level I/O task and to ensure that resources do not become deadlocked.
摘要:
A storage operating system is configured to assign volume block numbers (VBNs) to a volume. The system has a plurality of disks, and each disk of the plurality of disks is assigned disk block numbers (DBNs). A raidmap is configured to map the VBNs to the DBNs of the plurality of physical disks, the mapping for a particular disk stored in a disk label for the particular disk. The disk label for the particular disk is then written to the particular disk.
摘要:
The invention provides a method and system for recovery of file system data in file servers having mirrored file system volumes. The invention makes use of a “snapshot” feature of a robust file system (the “WAFL File System”) disclosed in the Incorporated Disclosures, to rapidly determined which of two or more mirrored volumes is most up-to-date, and which file blocks of the most recent mirrored volume have been changed from each one of the mirrored file systems. In a preferred embodiment, among a plurality of mirrored volumes, the invention rapidly determines which is the most up-to-date by examining a consistency point number maintained by the WAFL File System at each mirrored volume. The invention rapidly pairwise determines what blocks are shared between that most up-to-date mirrored volume and each other mirrored volume, in response to a snapshot of the file system maintained at each mirrored volume and are stored in common pairwise between each mirrored volume and the most up-to-date mirrored volume. The invention re synchronizes only those blocks that have been changed between the common snapshot and the most up-to-date snapshot.
摘要:
A system and method are disclosed for rendering devices on a cluster globally visible, wherein the cluster includes a plurality of nodes on which the devices are attached. The system establishes for each of the devices in the cluster at least one globally unique identifier enabling global access to the device. The system includes a device registrar that creates the identifiers and a global file system. The identifiers include a globally unique logical name by which users of the cluster identify the device and a globally unique physical name by which the global file system identifies the device. The registrar creates a one-to-one mapping between the logical name and the physical name for each of the devices. The system also includes a device information (dev.sub.-- info) data structure maintained by the device registrar that represents physical associations of the devices within the cluster. Each association corresponds to the physical name of a device file maintained by the global file system. The device registrar determines for an attached device a globally unique, device type (dev.sub.-- t) value; creates dev.sub.-- info data structure entry and a corresponding physical name; generates a logical name based on the dev.sub.-- t value and the physical name; and associates the dev.sub.-- t value with the device file representing the attached device. Given this framework, a user of the cluster can access any of the devices by issuing the global file system an access request identifying the device to be accessed by its logical name.
摘要:
A computer storage system is described. A range of volume block numbers (VBNs) is assigned to a volume. A range of storage device block numbers (DBNs) is assigned to each of a plurality of storage devices. A first mapping parameters are created to map a first range of VBN numbers to a first selected range of DBNs using a first portion of a new storage device. A second mapping parameters are created to map a second range of VBN numbers to a second range of DBNs on a second portion of the new storage device.
摘要:
A computer storage system is described. A range of volume block numbers (VBNs) is assigned to a volume. A range of storage device block numbers (DBNs) is assigned to each of a plurality of storage devices. A first mapping parameters are created to map a first range of VBN numbers to a first selected range of DBNs using a first portion of a new storage device. A second mapping parameters are created to map a second range of VBN numbers to a second range of DBNs on a second portion of the new storage device.
摘要:
A storage operating system is configured to assign volume block numbers (VBNs) to a volume. The system has a plurality of disks, and each disk of the plurality of disks is assigned disk block numbers (DBNs). A raidmap is configured to map the VBNs to the DBNs of the plurality of physical disks, the mapping for a particular disk stored in a disk label for the particular disk. The disk label for the particular disk is then written to the particular disk.
摘要:
The invention provides an improved method and apparatus for creating a snapshot of a file system. A “copy-on-write” mechanism is used. The snapshot uses the same blocks as the active file system until the active file system is modified. Whenever a modification occurs, the modified data is copied to a new block and the old data is saved. In this way, the snapshot only uses space where it differs from the active file system, and the amount of work required to create the snapshot is small. A record of which blocks are being used by the snapshot is included in the snapshot itself, allowing effectively instantaneous snapshot creation and deletion. A snapshot can also be deleted instantaneously simply by discarding its root inode.