摘要:
The invention proposes using statistical methods to do natural language understanding. The key notion is that there are "strings" of words in the natural language, that correspond to a single semantic concept. One can then define an alignment between an entire semantic meaning (consisting of a set of semantic concepts), and the English. This is modeled using P(E,A.vertline.S). One can model p(S) separately. This allows each parameter to be modeled using many different statistical models.
摘要:
A system for translating a first word set in a source language into a second word set in a target language, the system comprising: input means for inputting the first word set into the system; tagging means for tagging the first word set input to the system so as to at least substantially reduce non-essential variability in the first word set; translation means including a single a posteriori conditional probability model and a target candidate store for storing target language candidate word sets, wherein the translation means employs the single model to evaluate the target language candidate word sets in order to select the target language candidate word set having a best score with respect to the first word set; and output means for outputting the best scoring target language candidate word set as the second word set in the target language.
摘要:
A method of identifying and using side information available to statistical machine translation systems within an enterprise setting, the method including extracting user-specific interaction and non-interaction-based information from at least one corresponding database within the enterprise for each of a plurality of users, aggregating the user-specific interaction and non-interaction based information from a plurality of users, by using a processor on a computer, to tune and adapt background translation and language models, and updating all relevant models within the enterprise after user activity based on the tuned and adapted translation and language models.
摘要:
A method of identifying and using side information available to statistical machine translation systems within an enterprise setting, the method including extracting user-specific interaction and non-interaction-based information from at least one corresponding database within the enterprise for each of a plurality of users, aggregating the user-specific interaction and non-interaction based information from a plurality of users, by using a processor on a computer, to tune and adapt background translation and language models, and updating all relevant models within the enterprise after user activity based on the tuned and adapted translation and language models.
摘要:
A method of gender dependent speech recognition includes the steps of identifying phone state models common to both genders, identifying gender specific phone state models, identifying a gender of a speaker and recognizing acoustic data from the speaker. A method of constructing a gender-dependent speech recognition model includes the steps of providing training data of a known gender, aligning the training data, tagging the training data with a gender to create gender-tagged data, determining a gender question at a node to determine gender dependence of the gender-tagged data, determining a phonetic context question at the node to determine phonetic context dependence of the gender-tagged data, determining a highest value of an evaluation function between the gender dependence and the phonetic context dependence to determine which dependence is a dominant dependence, splitting the data of the dominant dependence into child nodes according to likelihood criteria, comparing the highest value with a threshold value to determine if additional splitting is necessary, repeating theses steps for each child node until the highest value is below the threshold value and counting the nodes having gender dependence to determine an overall gender dependence level. A gender-dependent speech recognition system includes an input device for inputting speech to a preprocessor. The preprocessor converts the speech into acoustic data, and a processor for identifies gender-dependent phone state models and phone state modes common to both genders. The phone state models are stored in a memory device wherein the processor recognizes the speech in accordance with the phone state models.
摘要:
A fast vocabulary independent method for spotting words in speech utilizes a preprocessing step and a coarse-to-detailed search strategy for spotting a word/phone sequence in speech. The preprocessing includes a Viterbi-beam phone level decoding using a tree-based phone language model. The coarse search matches phone-ngrams to identify regions of speech as putative word hits, and the detailed search performs an acoustic match at the putative hits with a model of the given word included in the vocabulary of the recognizer.
摘要:
Methods and apparatus are provided for annotating documents with one or more of entities, events and relations. Documents are annotated by presenting the document to a user; presenting the user with a list of possible entity types, wherein the list of possible entity types is configurable; and obtaining at least one mention annotation that associates a selected phrase in the document with one of the possible entity types. The selected phrase can be presented to the user, for example, based on one or more presentation rules associated with the associated entity type. The method can be implemented, for example, in a client-server configuration where a browser communicates with a remote server. A document can also be annotated by presenting the document to a user; presenting the user with a list of possible relation types, wherein the list of possible relation types is configurable; receiving at least two mention annotations from the user that each associate a selected phrase in the document with a entity type; and obtaining a relation annotation, wherein the relation annotation specifies a relation type between the at least two mention annotations.
摘要:
A statistical language model for inflected languages, having very large vocabularies, is generated by splitting words into stems, prefixes and endings, and deriving trigrams for the stems, ending and prefixes. The statistical dependence of endings and prefixes from each stem is also obtained, and the resulting language model is a weighted sum of these scores.