摘要:
Various illustrative embodiments of a multi-layer brazing sheet are provided. The multi-layer brazing sheet demonstrates improved corrosion resistance on its exposed air side surface.
摘要:
Various illustrative embodiments of a multi-layer brazing sheet are provided. The multi-layer brazing sheet demonstrates improved corrosion resistance on its exposed air side surface.
摘要:
A heat exchanger tube having enhanced corrosion resistance and improved resistance to high burst pressures. The heat exchanger tube comprises an aluminum alloy that consists essentially of about 0.01-1.5% silicon, up to about 1.2% copper, up to about 2.0% manganese, about 0.01-1.0% iron, about 0.01-5.0% zinc, up to about 0.02% titanium and the balance substantially aluminum and incidental elements and impurities.
摘要:
A heat exchanger tubing includes at least a pair of tubes (1) that are connected to and separated by a connecting member (3). The connecting member (3) has a number of fin projections (7) extending at an angle from the member (3), each fin projection (7) having an opening (9) to allow air to pass through the member. The tubing is arranged between headers (21) of a heat exchanger (20) in an angled configuration so that the fins align with the air flow (A) passing across the tubing for enhanced heat exchange. The connecting member (3) can also be multivoid tubing (41), which has the fin projections for heat transfer or uses the passageways (49) in the multivoid tubing and fluid flowing through the channels for heat exchange.
摘要:
An aluminum alloy composition includes controlled amounts of iron, manganese, zinc, zirconium, vanadium, and titanium to effectively inhibit grain growth during exposure to elevated temperatures while maintaining extrudability and corrosion resistance. The composition is especially adapted for use as micro-multivoid tubing for brazed heat exchanger applications and has a post-braze grain structure that is more resistant to intergranular corrosion so as to reduce or eliminate heat exchanger failures during service.
摘要:
An aluminum alloy article containing the alloying amounts of iron, silicon, manganese, titanium, and zinc has controlled levels of iron and manganese to produce an alloy article that combines excellent corrosion resistant with good formability. The alloy article composition employs a controlled ratio of manganese to iron and controlled total amounts of iron and manganese to form intermetallic compounds in the final alloy article. The electrolytic potential of the intermetallic compounds match the aluminum matrix of the article to minimize corrosion. The levels of iron and manganese are controlled so that the intermetallic compounds are present in a volume fraction that allows the alloy article to be easily formed. The aluminum alloy composition is especially adapted for extrusion processes, and tubing that are used in heat exchanger applications.
摘要:
A corrosion resistant aluminum alloy has controlled amounts of iron, manganese, chromium, and titanium along with levels of copper, silicon, nickel, and no more than impurity levels of zinc. The alloy chemistry is tailored such that the electrolytic potential of the grain boundaries matches the alloy matrix material to reduce intergranular corrosion. The alloy is particularly suited for the manufacture of tubing for heat exchangers using extrusion and brazing techniques.
摘要:
A heat exchanger tube having enhanced corrosion resistance and improved resistance to high burst pressures. The heat exchanger tube comprises an aluminum alloy that consists essentially of about 0.01-1.5% silicon, up to about 1.2% copper, up to about 2.0% manganese, about 0.01-1.0% iron, about 0.01-5.0% zinc, up to about 0.02% titanium and the balance substantially aluminum and incidental elements and impurities.
摘要:
A heat exchanger tubing includes at least a pair of tubes (1) that are connected to and separated by a connecting member (3). The connecting member (3) has a number of fin projections (7) extending at an angle from the member (3), each fin projection (7) having an opening (9) to allow air to pass through the member. The tubing is arranged between headers (21) of a heat exchanger (20) in an angled configuration so that the fins align with the air flow (A) passing across the tubing for enhanced heat exchange. The connecting member (3) can also be multivoid tubing (41), which has the fin projections for heat transfer or uses the passageways (49) in the multivoid tubing and fluid flowing through the channels for heat exchange.
摘要:
A corrosion resistant aluminum alloy has controlled amounts of iron, manganese, chromium, and titanium along with levels of copper, silicon, nickel, and no more than impurity levels of zinc. The alloy chemistry is tailored such that the electrolytic potential of the grain boundaries matches the alloy matrix material to reduce intergranular corrosion. The alloy is particularly suited for the manufacture of tubing for heat exchangers using extrusion and brazing techniques.