摘要:
A computer system (10) implements a memory allocator that employs a data structure (FIG. 3) to maintain an inventory of dynamically allocated memory available to receive new data. It receives from one or more programs requests that it allocate memory from a dynamically allocable memory “heap.” It responds to such requests by performing the requested allocation and removing the thus-allocated memory block from the inventory. Conversely, it adds to the inventory memory blocks that the supported program or programs request be freed. In the process, it monitors the frequencies with which memory blocks of various sizes are allocated, and it projects from those frequencies future demand for memory blocks of those sizes. To split a relatively large block in order to meet an actual or expected request for a smaller block, it bases its selection of the larger block to be split on whether the supply of free blocks of the larger block's size is great enough to meet the expected demand for such blocks. Splitting occurs both preemptively, i.e., before a request for the result of the splitting, and reactively, i.e., in response to a previously made request for a block that will result from the splitting operation.
摘要:
A computer system (10) implements a memory allocator that employs a data structure (FIG. 3) to maintain an inventory of dynamically allocated memory available to receive new data. It receives from one or more programs requests that it allocate memory from a dynamically allocable memory “heap.” It responds to such requests by performing the requested allocation and removing the thus-allocated memory block from the inventory. Conversely, it adds to the inventory memory blocks that the supported program or programs request be freed. In the process, it monitors the frequencies with which memory blocks of various sizes are allocated, and it projects from those frequencies future-demand values for memory blocks of those sizes. It then splits larger blocks into smaller ones preemptively, i.e., before a request for the result of the splitting. To split a relatively large block preemptively in order to meet an expected request for a smaller block, it bases its selection of the larger block to be split on whether the supply of free blocks of that size is great enough to meet the expected demand for such blocks. It also splits blocks reactively, i.e., in response to a previously made request for a block that will result from the splitting operation.
摘要:
A computer system (10) implements a memory allocator that employs a data structure (FIG. 3) to maintain an inventory of dynamically allocated memory available to receive new data. It receives from one or more programs requests that it allocate memory from a dynamically allocable memory “heap.” It responds to such requests by performing the requested allocation and removing the thus-allocated memory block from the inventory. Conversely, it adds to the inventory memory blocks that the supported program or programs request be freed. In the process, it monitors the frequencies with which memory blocks of different sizes are allocated, and it projects from those frequencies future demand for different-sized memory blocks. When it needs to coalesce multiple smaller blocks to fulfil an actual or expected request for a larger block, it bases its selection of which constituent blocks to coalesce on whether enough free blocks of a constituent block's size exist to meet the projected demand for them.
摘要:
An object structure's header (40) allocates a two-bit synchronization-state field (42) solely to monitor data for implementing synchronization on that object. When the object is locked by a particular execution thread, or when one or more execution threads are waiting for a lock or notification on that object, its header contains a pointer to monitor resources in the form of a linked list of lock records (50, 52, 54) associated with the threads involved. The synchronization-state field (42) ordinarily contains an indication of whether such a linked list exists and, if so, whether its first member is associated with a thread that has a lock on the object. When a thread attempts to gain access to that linked list, it employs an atomic swap operation to place a special busy value in that lock-state field (42) and write its execution-environment pointer into the object's header (40). If the previous value of that field was not the special busy value, the thread uses the header's previous contents to perform its intended synchronization operation. Otherwise, it obtains that information through its own execution environment (44, 46, or 48) or that of the thread whose identifier the object header previously contained. When the thread completes its synchronization operation, it employs an atomic compare-and-swap operation to write the results into the object's header if that header still contains the thread identifier that the thread originally wrote there. Otherwise, it communicates that information to its successor thread if the thread identifier is different and thereby indicates that at least one successor is contending for access to the linked list.
摘要:
In a generational, copying garbage collector, young generation collection may be made more efficient by dynamically measuring object survival rates as a function of “fine-grained” allocation age, and choosing, on the basis of these survival rates, part of the young generation that will be not be collected, but instead scanned for pointers to objects in the rest of the young generation. The rest of the young generation, including objects referenced by the pointers, is then collected.
摘要:
A garbage collector treats a garbage-collected heap as divided into heap regions, for each of which it maintains a respective remembered set, whose entries list the locations where references located in the heap outside that region refer to references inside that region. The remembered sets are used during space-incremental collection operations on collection sets of those regions; if the garbage collector determines that objects in the collection set are not referred to directly or indirectly from outside the collection set, it reclaims the memory space that they occupy. It places entries into the remembered sets independently of the locations at which the references were found, so any region can be chosen for inclusion in any collection set; no predetermined collection order is required. Instead, the garbage collector performs global marking operations and uses the results to select for collection-set membership the regions that it can most likely collect efficiently.
摘要:
A garbage collector treats a heap as divided into regions. From a candidate set of those regions, it selects the collection sets on which it performs collection increments from among those regions in accordance with a selection criterion separate from the ages of the objects that those regions contain. It nonetheless segregates objects according to age, placing objects in such a manner that no candidate-set region containing an object whose age is less than some predetermined maximum also contains an object of a different age.
摘要:
A software transactional memory system is provided with overflow handling. The system includes a global version counter with an epoch number and a version number. The system accesses the global version counter prior to and subsequent to memory accesses of transactions to validate read accesses of the transaction. The system includes mechanisms to detect global version number overflow and may allow some or all transactions to execute to completion subsequent to the global version number overflowing. The system also provides publication, privatization, and granular safety properties.
摘要:
A dynamic race detection system is provided that detects race conditions in code that executes concurrently in a computer system. The dynamic race detection system uses a modified software transactional memory (STM) system to detect race conditions. A compiler converts portions of the code that are not configured to operate with the STM system into pseudo STM code that operates with the STM system. The dynamic race detection system detects race conditions in response to either a pseudo STM transaction in the pseudo STM code failing to validate when executed or an actual STM transaction failing to validate when executed because of conflict with a concurrent pseudo STM transaction.
摘要:
A compiler is provided that determines when the use of software transactional memory (STM) primitives may be optimized with respect to a set of collectively dominating STM primitives. The compiler analysis coordinates the use of variables containing possible shadow copy pointers to allow the analysis to be performed for both direct write and buffered write STM systems. The coordination of the variables containing the possible shadow copy pointers ensures that the results of STM primitives are properly reused. The compiler analysis identifies memory accesses where STM primitives may be eliminated, combined, or substituted for lower overhead STM primitives.