摘要:
A clamping force mechanism for use with electrosurgery allow a user to seal and/or join patient's particular vascular tissue; the mechanism is elongate with user and patient ends. An actuator is at the user end and the effectors are at the patient end. Each effector has a face of an area to contact the particular vascular tissue. A lost motion connection transfers user actuation to the effectors to hold a predetermined clamping force during electrosurgical tissue sealing. A yielding member in the loss motion connection clamps the particular tissue between the faces with a predetermined force. The yielding member is a spring, slip clutch or hydraulic coupling possibly near the actuator. An active electrode is carried on one end effector and a return electrode contacts the tissue so an electrosurgical energy supply connected thereacross delivers energy therebetween. A feedback circuit responds to parameters of energy delivered to tissue. A temperature sensor on one face and an impedance monitor respond to energy delivered. A control applies energy to held tissue to seal and/or join it.
摘要:
A clamping force mechanism and its method of use with electrosurgery allow a user to seal and/or join patient's particular vascular tissue; the mechanism is elongate with user and patient ends. An actuator is at the user end and the effectors are at the patient end. Each effector has a face of an area to contact the particular vascular tissue. A lost motion connection transfers user actuation to the effectors to hold a predetermined clamping force during electrosurgical tissue sealing. A yielding member in the loss motion connection clamps the particular tissue between the faces with a predetermined force. The yielding member is a spring, slip clutch or hydraulic coupling possibly near the actuator. An active electrode is carried on one end effector and a return electrode contacts the tissue so an electrosurgical energy supply connected thereacross delivers energy therebetween. A feedback circuit responds to parameters of energy delivered to tissue. A temperature sensor on one face and an impedance monitor respond to energy delivered. A control applies energy to held tissue to seal and/or join it. The method transfers user actuation of the effectors with the lost motion connection, maintains clamping force while sealing and applying electrosurgical energy to seal and/or join held tissue. Energy is applied to a temperature or an impedance. The method shifts the yielding member so the opposing faces clamp the particular tissue therebetween with the force from the spring via a transfer rod or by the hydraulic coupling or the slip clutch for a range of pressure.
摘要:
A clamping force mechanism and its method of use with electrosurgery allow a user to seal and/or join patient's particular vascular tissue; the mechanism is elongate with user and patient ends. An actuator is at the user end and the effectors are at the patient end. Each effector has a face of an area to contact the particular vascular tissue. A lost motion connection transfers user actuation to the effectors to hold a predetermined clamping force during electrosurgical tissue sealing. A yielding member in the loss motion connection clamps the particular tissue between the faces with a predetermined force. The yielding member is a spring, slip clutch or hydraulic coupling possibly near the actuator. An active electrode is carried on one end effector and a return electrode contacts the tissue so an electrosurgical energy supply connected thereacross delivers energy therebetween. A feedback circuit responds to parameters of energy delivered to tissue. A temperature sensor on one face and an impedance monitor respond to energy delivered. A control applies energy to held tissue to seal and/or join it. The method transfers user actuation of the effectors with the lost motion connection, maintains clamping force while sealing and applying electrosurgical energy to seal and/or join held tissue. Energy is applied to a temperature or an impedance. The method shifts the yielding member so the opposing faces clamp the particular tissue therebetween with the force from the spring via a transfer rod or by the hydraulic coupling or the slip clutch for a range of pressure.
摘要:
Electrosurgical energy is used in combination with a surgical tool to seal vessels and vascular tissue of a patient. One of the important advances of the present system is that it can effectively seal vessels of a patient without leaving any foreign material in the body of the patient. The present system is also capable of sealing vessels as large as ten millimeters in diameter. Another advantage of the present system is that the surgeon can visually inspect the integrity of the seal. The invention works with a combination of pressure and controlled application of electrosurgical energy to achieve the desired result. A surgical tool is used to grasp and apply an appropriate amount of closure force to the tissue of the patient. The tool is capable of conducting electrosurgical energy to the tissue concurrently with the application of the closure force. A method for sealing vessels and vascular tissue of a patient includes the steps of applying pressure to the vessels and other tissues of the patient; applying a first level of electrosurgical power to the vessels and other tissue sufficient to melt proteins in the tissue; applying a second level of electrosurgical power to the vessels and other tissue sufficient to cause desiccation without charring; reducing the electrosurgical power substantially to zero for a length of time sufficient to allow the vessels and other tissues to cool into a new compressed form; and relieving the pressure on the tissue.
摘要:
A laparoscopic bipolar electrosurgical instrument for sealing tissue includes a handle having an elongated tube affixed thereto. The tube includes first and second jaw members having electrically conductive sealing surfaces attached to a distal end thereof which are movable from a first position for approximating tissue to a second position for grasping tissue therebetween. The handle includes a fixed handle and a handle which is movable relative to the fixed handle to effect movement of the jaw members from the first position to the second position for grasping tissue. The jaw members connect to a source of electrosurgical energy such that the opposable sealing surfaces are capable of conducting electrosurgical energy through tissue held therebetween. A stop is included for maintaining a minimum separation distance between opposing sealing surfaces. A ratchet is also included to maintain a closure force in the range of about 7 kg/cm2 to about 13 kg/cm2 between opposing sealing surfaces.
摘要翻译:用于密封组织的腹腔镜双极电外科器械包括具有固定到其上的细长管的手柄。 管包括第一和第二钳口构件,其具有附接到其远端的导电密封表面,其可从用于近似组织的第一位置移动到用于抓握其间的组织的第二位置。 手柄包括固定手柄和手柄,该手柄可相对于固定手柄移动,以实现卡爪构件从第一位置到第二位置的移动,从而抓住组织。 钳口构件连接到电外科能量源,使得相对的密封表面能够通过保持在其间的组织进行电外科能量。 包括一个止动件,用于保持相对的密封表面之间的最小间隔距离。 还包括棘轮以在相对的密封表面之间保持约7kg / cm 2至约13kg / cm 2的范围内的闭合力。
摘要:
A laparoscopic bipolar electrosurgical instrument for sealing tissue includes a handle having an elongated tube affixed thereto. The tube includes first and second jaw members having electrically conductive sealing surfaces attached to a distal end thereof which are movable from a first position for approximating tissue to a second position for grasping tissue therebetween. The handle includes a fixed handle and a handle which is movable relative to the fixed handle to effect movement of the jaw members from the first position to the second position for grasping tissue. The jaw members connect to a source of electrosurgical energy such that the opposable sealing surfaces are capable of conducting electrosurgical energy through tissue held therebetween. A stop is included for maintaining a minimum separation distance between opposing sealing surfaces. A ratchet is also included to maintain a closure force in the range of about 7 kg/cm2 to about 13 kg/cm2 between opposing sealing surfaces.
摘要翻译:用于密封组织的腹腔镜双极电外科器械包括具有固定到其上的细长管的手柄。 管包括第一和第二钳口构件,其具有附接到其远端的导电密封表面,其可从用于近似组织的第一位置移动到用于抓握其间的组织的第二位置。 手柄包括固定手柄和手柄,该手柄可相对于固定手柄移动,以实现卡爪构件从第一位置到第二位置的移动,从而抓住组织。 钳口构件连接到电外科能量源,使得相对的密封表面能够通过保持在其间的组织进行电外科能量。 包括一个止动件,用于保持相对的密封表面之间的最小间隔距离。 还包括棘轮以在相对的密封表面之间保持在约7kg / cm 2至约13kg / cm 2范围内的闭合力。
摘要:
A laparoscopic bipolar electrosurgical instrument for sealing tissue includes a handle having an elongated tube affixed thereto. The tube includes first and second jaw members having electrically conductive sealing surfaces attached to a distal end thereof which are movable from a first position for approximating tissue to a second position for grasping tissue therebetween. The handle includes a fixed handle and a handle which is movable relative to the fixed handle to effect movement of the jaw members from the first position to the second position for grasping tissue. The jaw members connect to a source of electrosurgical energy such that the opposable sealing surfaces are capable of conducting electrosurgical energy through tissue held therebetween. A stop is included for maintaining a minimum separation distance between opposing sealing surfaces. A ratchet is also included to maintain a closure force in the range of about 7 kg/cm2 to about 13 kg/cm2 between opposing sealing surfaces.
摘要翻译:用于密封组织的腹腔镜双极电外科器械包括具有固定到其上的细长管的手柄。 管包括第一和第二钳口构件,其具有附接到其远端的导电密封表面,其可从用于近似组织的第一位置移动到用于抓握其间的组织的第二位置。 手柄包括固定手柄和手柄,该手柄可相对于固定手柄移动,以实现卡爪构件从第一位置到第二位置的移动,从而抓住组织。 钳口构件连接到电外科能量源,使得相对的密封表面能够通过保持在其间的组织进行电外科能量。 包括一个止动件,用于保持相对的密封表面之间的最小间隔距离。 还包括棘轮以在相对的密封表面之间保持约7kg / cm 2至约13kg / cm 2的范围内的闭合力。
摘要:
A bipolar electrosurgical instrument for clamping, grasping, manipulating, and sealing tissue includes first and second shafts each having a jaw member extending from a distal end thereof and a handle disposed at a proximal end thereof. The handle being operable to effect movement of the jaw members relative to one another from a first position wherein the jaw members are disposed in spaced relation relative to one another to a second position wherein the jaw members cooperate to grasp tissue therebetween. The bipolar instrument is connectable to a source of electrical energy having a first electrical potential connected to one of the jaw members and a second electrical potential connected to the other of the jaw members such that the jaw members are capable of selectively conducting energy through tissue held therebetween to effect a seal. Both the first and second electrical potentials are transmitted to the jaw members through the first shaft.
摘要:
A system for controlling temperature of a fluid used during treatment of biological tissue includes a fluid temperature control apparatus. The apparatus includes at least one heat transfer device and a solution bag and/or a heat transfer membrane. The solution bag and/or the heat transfer membrane reside in thermal communication with the heat transfer device. When the solution bag and/or the heat transfer membrane is fluidically coupled to an electrosurgical device, fluid is supplied to the electrosurgical device at a controlled temperature during a surgical procedure utilizing the electrosurgical device to enable more efficient treatment of the biological tissue. A corresponding method includes fluidically coupling the fluid temperature control apparatus to the electrosurgical device and supplying fluid at a controlled temperature during a surgical procedure utilizing the electrosurgical device to enable more efficient treatment of the biological tissue.
摘要:
A system for heat ablation of tissue, the system comprising a radiofrequency source configured to supply RF energy to at least two electrodes for treating tissue, at least one return electrode configured to return the RF energy to the radiofrequency source, a controller configured to sequentially apply the RF energy to each of the at least two electrodes for a pre-determinable period of time and circuitry configured to switch the RF energy to an internal load. The RF energy is applied simultaneously to the internal load and at least one of the at least two electrodes. The controller is configured to apply the RF energy to the next electrode in the sequence when the amount of time the applied RF energy is off is greater than a predetermined minimum off time.