Abstract:
A battery recharging circuit for a valve regulated lead-acid battery having a plurality of cells, each cell including a positive electrode, a negative electrode, a DC voltage source for generating a voltage applied to the positive and negative battery electrodes, and a reference electrode includes a regenerating voltage source for selectively applying a regenerating voltage between the reference electrode and one of the battery electrodes for regenerating the reference electrode, and a reference voltage source for generating a reference voltage. The circuit further includes circuitry for measuring the voltage level between the reference electrode and a battery electrode after removal of the regenerating voltage from the reference electrode. Circuitry compares the measured voltage level to the reference voltage to generate an error correction signal. The voltage generated by the DC voltage source is adjusted based upon the error correction signal, such that the voltage of the DC voltage source applied to the battery electrodes adjusts the voltage level between the reference electrode and one of the battery electrodes to be substantially equal to the reference voltage.
Abstract:
A battery having a top wall, a bottom wall, a pair of end walls and a pair of side walls includes a pair of recesses disposed within one of the battery walls. Battery post contacts are disposed within the recesses. The battery post contacts do not extend beyond the recesses. A stand includes a pair of stand post contacts which are adapted for mating with the battery post contacts within the battery recesses.
Abstract:
For use with a power plant having a rectifier and a backup battery coupled to a variable load, a system for, and method of, assessing a capacity of the backup battery. In one embodiment, the system includes: (1) a controller, coupled to the rectifier, that controls an output current of the rectifier to maintain a discharge current of the backup battery at a substantially constant level and (2) a voltage sensor, coupled to the backup battery, that measures a voltage of the backup battery.
Abstract:
For use with a reserve battery couplable to a charging circuit capable of providing a charging current to the reserve battery, a mode selection circuit and a method of operation thereof. The mode selection circuit includes, in one embodiment, (1) a signal generator that generates a signal based on a temperature of the reserve battery and (2) a mode-changing circuit, coupled to the signal generator, that accepts the signal and selects an alternative one of: (a) a non-charge mode in which the charging current is substantially interrupted when the temperature is greater than a reference temperature and (b) a charge mode in which the charging current is provided to the reserve battery when the temperature is less than the reference temperature.
Abstract:
An integral spill containment system for a composite battery stand having a shelf adapted to receive at least one battery subject to leaking electrolyte, a method of containing the electrolyte and a composite battery stand incorporating the system or the method. In one embodiment, the system includes (1) an aperture, located in the shelf, adapted to channel the electrolyte away from the shelf and (2) a removable tray, located under the shelf and within a footprint of the battery stand, adapted to collect the electrolyte via the aperture thereby containing the electrolyte within the footprint of the battery stand.
Abstract:
A system for, and method of, assessing a capacity and/or age of a battery. In one embodiment, the system includes: (1) a voltage sensor, coupled to the battery, that develops a signal indicative of a parameter of a coup de fouet effect experienced by the battery as the battery is discharged and (2) a controller, coupled to the voltage sensor, that receives the signal and determines the capacity and/or age as a function thereof.
Abstract:
For use with a composite battery stand having a shelf adapted to receive at least one battery, an electrical distribution system, a composite battery stand incorporating the system and a method of manufacturing the composite battery stand. In one embodiment, the system includes: (1) a rigid conductor, longitudinally formed in the shelf, that provides structural support to the shelf and (2) a connector coupled to the rigid conductor and adapted to receive a mating connector of a battery thereby providing electrical connectivity thereto.
Abstract:
A valve regulated lead-acid battery having a plurality of negative and positive electrode plates, a plurality of separators soaked with electrolyte interleaved between the plates, a negative strap and positive strap interconnecting the respective plurality of negative and positive electrodes includes separator material soaked with electrolyte disposed adjacent to the negative strap to thereby increase oxygen reduction.
Abstract:
For use with a reserve battery couplable to a charging circuit capable of providing a charging current to the reserve battery, a mode selection circuit and a method of operation thereof. The mode selection circuit includes, in one embodiment, (1) a signal generator that generates a signal based on a temperature of the reserve battery and (2) a mode-changing circuit, coupled to the signal generator, that accepts the signal and selects an alternative one of: (a) a non-charge mode in which the charging current is substantially interrupted when the temperature is greater than a reference temperature and (b) a charge mode in which the charging current is provided to the reserve battery when the temperature is less than the reference temperature.