摘要:
Disclosed is an ultrasound color Doppler image system. The ultrasound color Doppler image system includes a calculation unit that calculates a mean value associated with an I/Q signal corresponding to a pixel of a color image in an ultrasound image and generates a multiplication value using the calculated mean value; a comparison unit that compares the generated multiplication value with the mean value; and a masking unit that performs masking of the pixel based on a comparison result, and, the calculation unit calculates the mean value of the I/Q signal for each frame, selects a reference mean value based on scales of the calculated mean values, and generates the multiplication value by multiplying the selected reference mean value and a scale factor.
摘要:
Disclosed is an ultrasound color Doppler image system. The ultrasound color Doppler image system includes a calculation unit that calculates a mean value associated with an I/Q signal corresponding to a pixel of a color image in an ultrasound image and generates a multiplication value using the calculated mean value; a comparison unit that compares the generated multiplication value with the mean value; and a masking unit that performs masking of the pixel based on a comparison result, and, the calculation unit calculates the mean value of the I/Q signal for each frame, selects a reference mean value based on scales of the calculated mean values, and generates the multiplication value by multiplying the selected reference mean value and a scale factor.
摘要:
Embodiments of adaptively performing clutter filtering are disclosed. In one embodiment, by way of non-limiting example, an ultrasound system comprises: an ultrasound data acquisition unit configured to transmit and receive ultrasound signals to and from a target object to thereby output a plurality of ultrasound data for obtaining a color Doppler mode image, wherein the target object includes at least one of a tissue and a blood flow; and a processing unit placed in communication with the ultrasound data acquisition unit and being configured to locate the plurality of ultrasound data on a complex plane, the processing unit being further configured to perform a circle fitting upon the plurality of ultrasound data located on the complex plane and perform a downmixing and a clutter filtering upon the circle-fitted ultrasound data in consideration of speed of the tissue.
摘要:
An ultrasound diagnostic device includes a plurality of channels configured to receive data and a scan line data forming unit including a plurality of sub-scan line data forming groups and a data summing unit. The sub-scan line data forming group forms partial data of scan lines, and the data summing unit forms scan line data of the scan lines by summing the partial data. The sub-scan line data forming group includes a plurality of sub-scan line data forming units for forming the partial data of the scan lines by using the receiving data and providing a transmission path of the receiving data. First data lines transmit the receiving data between at least one of the sub-scan data forming unit and the channels, and second data lines transfer the receiving data between the sub-scan line data forming units.
摘要:
There is provided an ultrasound system for forming strain images by decreasing decorrelation of receive signals, which vary with time or space. More specifically, the decorrelation between the receive signals obtained without and with applying stress to a target object is reduced to decrease an error, which occurs during the calculation of a delay. Also, a center frequency, which varies with depth of a target object, is compensated to form the strain image.
摘要:
There is provided an ultrasound diagnostic device including receiving data a transmission lines between scan line data forming units and channels and a method of forming scan line data. The ultrasound diagnostic device includes a plurality of channels for providing receiving data and a scan line data forming unit including a plurality of sub-scan line data forming groups and a data summing unit, wherein the sub-scan line data forming group forms partial data of scan lines, and wherein the data summing unit forms scan line data of the scan lines by summing the partial data. The sub-scan line data forming group includes a plurality of sub-scan line data forming units for forming the partial data of the scan lines by using the receiving data and providing a transmission path of the receiving data, first data lines for transmitting the receiving data between at least one of the sub-scan data forming unit and the channels and second data lines for transferring the receiving data between the sub-scan line data forming units.
摘要:
Disclosed is an ultrasound imaging system based on a multi-stage pulse compression and multi-stage time delaying scheme. In the ultrasound imaging system, a transducer array is grouped into a predetermined number of transducer groups, and the grouped ultrasound signals are processed hierarchically via multi-stage pulse compression and multi-stage time delaying operations so that a finely receive-focused ultrasound signal can be obtained.
摘要:
An ultrasound system and method for forming ultrasound data corresponding to a receive scan line independent of a synthetic aperture. The ultrasound system includes the ultrasound data forming unit configured to: form scan line data corresponding to each of the receive scan lines by using data provided from the receive channels; form accumulated data by accumulating the scan line data corresponding to the receive scan lines of the same position; set a storing start position for storing the accumulated data based on the transmit synthesizing number; and store the accumulated data by shifting the storing start position by 1, thereby forming ultrasound data corresponding to each of the receive scan linen lines.
摘要:
An adaptive transmit-focusing and beam-forming method and apparatus is provided, which in connection with beam-forming applies adaptive patterns of delay profiles to reflected ultrasonic pulses from a group of ultrasonic pulses, received by transducer arrays, forms multiple sets of preliminary scan-line data, and combines the multiple sets of preliminary scan-line data into single scan-line data; and in connection with transmit-focusing performs focusing a group of ultrasonic pulses by applying a plurality of delay profiles in accordance with propagation velocities within an object region to be ultrasonic imaged. The adaptive transmit-focusing and beam-forming method and apparatus reduces transmit-focusing and beam-forming errors generated from applying a single pattern of delay profile, and provides clear ultrasonic images.
摘要:
The present invention relates to a method of removing an effect of side lobes in an ultrasound synthetic image. The method includes: a) setting a plurality of scan lines and defining sequential indices upon the scan lines; b) setting a transmit order of a transmit beam for the scan lines in a non-sequential manner in which increment and decrement of the indices of the scan lines are repeated; c) transmitting the transmit beam based on the set transmit order to obtain a plurality of receive beams in response to each transmission of the transmit beam; d) grouping the receive beams to an increment group corresponding to an increment direction of the numbers of the scan lines and a decrement group corresponding to a decrement direction of the numbers of the scan lines; e) performing an auto correlation upon the receive beams included in the respective increment group and the decrement group; and f) applying weights to the auto correlation results and summing the weight-applied auto correlation results to thereby remove an effect of side lobes.