Abstract:
Methods, network address translation (NAT) devices, network nodes and system for allowing identification of a private device in a public network or treating traffic of a private device in a public network. The NAT may allocate a private IPv4 address to the private device, reserve a block of ports on the public IPv4 address for the private device and send an identification of the block of ports to a network node in the public network. The network node of the public network may receive an identification of a block of ports on the public IPv4 address indicating that the block of ports is reserved for the private device and activate a rule for treating traffic of the private device.
Abstract:
Methods, network address translation (NAT) devices, network nodes and system for allowing identification of a private device in a public network or treating traffic of a private device in a public network. The NAT may allocate a private IPv4 address to the private device, reserve a block of ports on the public IPv4 address for the private device and send an identification of the block of ports to a network node in the public network. The network node of the public network may receive an identification of a block of ports on the public IPv4 address indicating that the block of ports is reserved for the private device and activate a rule for treating traffic of the private device.
Abstract:
A method, for use in a data center having tenants, of routing an IPv4 packet over an IPv6 network as an IPv6 packet includes: receiving the IPv4 packet from a first virtual machine associated with a first tenant and addressed to a second virtual machine associated with a second tenant; generating the header of the IPv6 packet to include an IPv6 address determined by applying a reversible transformation to one of: a combination of the IPv4 source address and an identifier of the first tenant, and a combination of the IPv4 destination address and an identifier of the second tenant; generating the payload of the IPv6 packet based on the payload of the received IPv4 packet; generating the IPv6 packet by assembling the generated payload with the generated header of the IPv6 packet; and transmitting the generated IPv6 packet over the IPv6 network to the second virtual machine.
Abstract:
A method and nodes are provided for registering a terminal. The terminal is capable of connecting in two distinct networks. The registration process for the terminal maps an identity and traffic handling policies of the terminal in a first network with an address prefix of the terminal obtained from the second network. The address prefix is obtained from the second network following authorization of the terminal in the first network. As traffic is exchanged between the terminal and a correspondent node while the terminal is accessing the second network, the mapping is used to ensure that policies for the terminal in the first network are applied in the second network.
Abstract:
An edge node of an Access/Network Service Provider (ANP) network tracks the delivery into the ANP network of content from Contzzent Providers (CP), and generates accounting sessions with an accounting server. The edge node is provisioned with the IP addresses of known CP servers. A content delivery session, characterized by a CP IP address and a content identifier, such as a Differentiated Service Code Point (DSCP) value, is started upon the source IP address of a packet matching a known CP, and a packet count is incremented for each subsequent packet from the CP with the same content identifier. An accounting session is initiated with an accounting server when the content delivery session is started, and the accounting session is terminated, with the packet count for the session, upon a time-out since the last packet received. Multiple content delivery sessions may be ongoing simultaneously.
Abstract:
A method and nodes are provided for registering a terminal. The terminal is capable of connecting in two distinct networks. The registration process for the terminal maps an identity and traffic handling policies of the terminal in a first network with an address prefix of the terminal obtained from the second network. The address prefix is obtained from the second network following authorization of the terminal in the first network. As traffic is exchanged between the terminal and a correspondent node while the terminal is accessing the second network, the mapping is used to ensure that policies for the terminal in the first network are applied in the second network.
Abstract:
A method and system for seamlessly handing off a Mobile Node (MN) equipped with a Wireless Local Area Network (WLAN) adaptor from a cellular network such as a GRPS/UMTS network to a WLAN network without interrupting the ongoing IP connection/session. When entering a WLAN coverage area, the roaming MN sends mobility information to a WLAN Integration Gateway (WIG) node allowing the WIG node to identify the source Service GPRS Support Node (SGSN). The WIG node contacts the source SGSN to obtain PDP Context information relative to the roaming MN, and establishes a new GTP tunnel with the servicing GGSN in order to complete the handoff. The WIG node may route data traffic for the MN by assigning a new IP address to the MN and by either performing IP-in-IP encapsulation or Network Address Translation (NAT).
Abstract:
An edge node of an Access/Network Service Provider (ANP) network tracks the delivery into the ANP network of content from Contzzent Providers (CP), and generates accounting sessions with an accounting server. The edge node is provisioned with the IP addresses of known CP servers. A content delivery session, characterized by a CP IP address and a content identifier, such as a Differentiated Service Code Point (DSCP) value, is started upon the source IP address of a packet matching a known CP, and a packet count is incremented for each subsequent packet from the CP with the same content identifier. An accounting session is initiated with an accounting server when the content delivery session is started, and the accounting session is terminated, with the packet count for the session, upon a time-out since the last packet received. Multiple content delivery sessions may be ongoing simultaneously.
Abstract:
Methods, network address translation (NAT) devices, network nodes and system for allowing identification of a private device in a public network or treating traffic of a private device in a public network. The NAT may allocate a private IPv4 address to the private device, reserve a block of ports on the public IPv4 address for the private device and send an identification of the block of ports to a network node in the public network. The network node of the public network may receive an identification of a block of ports on the public IPv4 address indicating that the block of ports is reserved for the private device and activate a rule for treating traffic of the private device.
Abstract:
A network element in a network is provided. The network element includes a receiver that receives a content request message. The received content request message indicates content to be transmitted to a device. The network element includes a processor in communication with the receiver. The processor generates a modified content request message by inserting identification data into the content request message. The identification data identifies at least one of a plurality of network nodes in the network. The network element includes a transmitter that transmits the modified content request message to a content distribution network server. The receiver further receives a redirect message that is based on the transmitted modified content request message. The redirect message identifies that a one of the plurality of network nodes is a cache location storing the indicated content.