摘要:
A method of using nuclear spectroscopy measurements acquired while drilling a subsurface formation including: measuring indicators of a plurality of absolute or relative formation elemental concentrations; processing the measurements to determine a petrophysical parameter associated with the subsurface formation while drilling, and using the petrophysical parameter to determine a drilling parameter. The petrophysical parameter may include, for instance, the permeability of the subsurface formation and the drilling parameter may include, for instance, a change in the orientation of a directional drilling assembly or the point at which to stop drilling. The invention further involves an apparatus adapted to carry out the inventive method.
摘要:
A method of estimating a petrophysical property of a subsurface area that includes deriving an acoustic calibration relationship correlating acoustic propagation characteristics of a first subsurface area with a petrophysical property of the first subsurface area determined using nuclear spectroscopy measurements; processing acoustic data acquired from a second subsurface area to determine acoustic propagation characteristics associated with a plurality of regions within the second subsurface area; and estimating the petrophysical property of the regions within the second subsurface area using the calibration relationship and the acoustic propagation characteristics associated with the second subsurface area. An associated method includes determining one or more boundaries within the first subsurface area, deriving different acoustic calibration relationships on opposite sides of these one or more boundaries, and then using these different acoustic calibration relationships to estimate a petrophysical property of regions within the second subsurface area.
摘要:
A subsurface formation petrophysical evaluation method including: determining formation porosity and permeability using a quantitative indication of formation composition; estimating water-filled formation resistivity using the formation porosity; associating differences between measured formation resistivity and estimated water saturated formation resistivity with the presence of subsurface hydrocarbons; and estimating irreducible formation water saturation using the formation porosity and the formation permeability. The invention further involves an apparatus adapted to carry out the inventive method. Other aspects of the invention involve making a plurality of different measurements of a subsurface formation, including measuring indicators of a plurality of absolute or relative formation elemental concentrations; processing the measurements to determine a plurality of parameters associated with the subsurface formation, and determining either net pay intervals or drilling parameters using these formation parameters and either interval acceptance criteria or desired wellbore criteria, respectively.
摘要:
A method for determining total clay content of an earth formation based on elemental concentration logs obtained from a logging tool. This method avoids the need for obtaining an aluminum concentration measurement. First, the concentrations of a plurality of elements in the formation are determined without measuring an aluminum concentration. Then, at least the silicon, calcium, and iron concentrations are combined in accordance with a function determined by regression analysis to produce an estimate of the total clay content.
摘要:
Methods are disclosed which provide for quantifying and characterizing the mineral content of a formation as a function of depth. Elemental data derived from logging tools are input into an element-mineral transform operation, preferably a matrix which is constructed using multivariate statistical analysis on previously available data, to determine the quantity of at least one or more dominant minerals in the formation. From the mineral quantity information and the elemental log data, the formation minerals are further characterized. Information regarding the character and quantities of formation minerals is further used to obtain improved determinations of formation characteristics such as the cation exchange capacity and water saturation, and the grain density and formation porosity, as well as to obtain an increased understanding of the formation such as the depositional environment of the formation. A determination of formation characteristics and an increased understanding of the formation are both vital to production decisions concerning the formation.
摘要:
A modification to the Coates-Timur relationship to produce a more coherent relationship applicable to carbonate formations is disclosed. In this method, permeability may be determined using porosity and the ratio of bound fluid volume to (1—bound fluid volume). This method also allows for improved estimation of irreducible water saturation of a carbonate formation using the ratio of kc and (eφf+kc). Likewise, the bound fluid volume of a carbonate formation may be determined using the ratio of φkc and (eφf+kc). In these relationships, e, x, and f are constants according to the following relationships e=xc, f=bc+1, x is between 1 and 100 mD (preferably 10 mD).
摘要:
Methods for determining the permeability of an earth formation traversed by a borehole are provided and comprise: logging the borehole to determine indications of at least a plurality of elements in the formation; determining the mineralogical content of the formation from the elemental indications; determining the porosity of the formation; and determining the permeability of the formation as a function of the determined mineralogical content and porosity. The mineralogical content of the formation is preferably determined according to a transform which relates elemental concentrations of the formation to mineral weight percentages. The permeability is preferably determined according to a transform which equates the permeability to a product of the function of the formation porosity, the maximum feldspar content in a given zone of the formation, and an exponential function of the summation of pedetermined mineral components of the formation and residual weighted by a redetermined constant for each mineral component and the residual. If desired, the element to mineral transform can be combined with the formation mineral and porosity to permeability transform, thereby eliminating the step of determining the mineralogical content via the element-mineral transform.
摘要:
Methods are disclosed which provide for quantifying and characterizing the mineral content of a formation as a function of depth. Elemental data derived from logging tools are input into an element-mineral transform operation, to determine the quantity of at least one or more dominant minerals in the formation including minerals distinguishable by degree of crystallinity. From the mineral quantity information and the elemental log data, the formation minerals are further characterized. Information regarding the character and quantities of formation minerals is further used to obtain improved determinations of formation characteristics such as the cation exchange capacity and water saturation, and the grain density and formation porosity, as well as to obtain an increased understanding of the formation such as the depositional environment of the formation. A determination of formation characteristics and an increased understanding of the formation are both vital to production decisions concerning the formation.
摘要:
Formation strontium concentrations are measured utilizing a borehole tool. A log may be provided as a function of depth or distance. The strontium measurements can be correlated chronostratigraphically to provide a depth to absolute time correlation. Measures of strontium made in the borehole can be correlated to information obtained via seismic exploration of the formation traversed by the borehole. Measures of strontium in multiple boreholes of a single formation can be correlated.
摘要:
Formation strontium concentrations are measured utilizing a borehole tool. A log may be provided as a function of depth or distance. The strontium measurements can be correlated chronostratigraphically to provide a depth to absolute time correlation. Measures of strontium made in the borehole can be correlated to information obtained via seismic exploration of the formation traversed by the borehole. Measures of strontium in multiple boreholes of a single formation can be correlated.