摘要:
A method of using nuclear spectroscopy measurements acquired while drilling a subsurface formation including: measuring indicators of a plurality of absolute or relative formation elemental concentrations; processing the measurements to determine a petrophysical parameter associated with the subsurface formation while drilling, and using the petrophysical parameter to determine a drilling parameter. The petrophysical parameter may include, for instance, the permeability of the subsurface formation and the drilling parameter may include, for instance, a change in the orientation of a directional drilling assembly or the point at which to stop drilling. The invention further involves an apparatus adapted to carry out the inventive method.
摘要:
A subsurface formation petrophysical evaluation method including: determining formation porosity and permeability using a quantitative indication of formation composition; estimating water-filled formation resistivity using the formation porosity; associating differences between measured formation resistivity and estimated water saturated formation resistivity with the presence of subsurface hydrocarbons; and estimating irreducible formation water saturation using the formation porosity and the formation permeability. The invention further involves an apparatus adapted to carry out the inventive method. Other aspects of the invention involve making a plurality of different measurements of a subsurface formation, including measuring indicators of a plurality of absolute or relative formation elemental concentrations; processing the measurements to determine a plurality of parameters associated with the subsurface formation, and determining either net pay intervals or drilling parameters using these formation parameters and either interval acceptance criteria or desired wellbore criteria, respectively.
摘要:
A method of estimating a petrophysical property of a subsurface area that includes deriving an acoustic calibration relationship correlating acoustic propagation characteristics of a first subsurface area with a petrophysical property of the first subsurface area determined using nuclear spectroscopy measurements; processing acoustic data acquired from a second subsurface area to determine acoustic propagation characteristics associated with a plurality of regions within the second subsurface area; and estimating the petrophysical property of the regions within the second subsurface area using the calibration relationship and the acoustic propagation characteristics associated with the second subsurface area. An associated method includes determining one or more boundaries within the first subsurface area, deriving different acoustic calibration relationships on opposite sides of these one or more boundaries, and then using these different acoustic calibration relationships to estimate a petrophysical property of regions within the second subsurface area.
摘要:
A method for determining total clay content of an earth formation based on elemental concentration logs obtained from a logging tool. This method avoids the need for obtaining an aluminum concentration measurement. First, the concentrations of a plurality of elements in the formation are determined without measuring an aluminum concentration. Then, at least the silicon, calcium, and iron concentrations are combined in accordance with a function determined by regression analysis to produce an estimate of the total clay content.
摘要:
A method for determining the elemental concentrations in an underground formation by irradiating the formation with neutrons, detecting the .gamma. ray spectrum arising from neutron capture by the formation and analyzing the spectrum to determine elemental concentrations. This method avoids the need for activation measurements or natural radiation measurements and which is made possible by modifying the detected yield of iron (Fe) in the spectrum to compensate for the absence of aluminum (Al) and for the absence of potassium (K) when not measured directly. Apparatus for performing this method can comprise a neutron source, such as a broad energy chemical source, e.g. AmBe, or a pulsed accelerator source, a .gamma. ray detector for detecting capture .gamma. rays and means for analyzing the spectra detected by the detector for determining the elemental concentrations in the formation. This apparatus does not require an activation source nor does it require natural radiation or activation detectors and analysis circuitry.
摘要:
A method for determining in situ the carbon content of a source rock comprises determining the carbon/oxygen elemental ratio of the formation via inelastic gamma spectroscopy, determining the porosity of the formation, obtaining the oxygen contents and densities of the fluid and minerals in said formation, and determining the carbon content from said carbon/oxygen ratio, and said oxygen contents and densities of the fluid and minerals. The density of the fluid may be assumed, as may the oxygen content of both the formation fluid and minerals. The mineral density may also be assigned a constant value based on lithology. An alternative total carbon content determination is made by additionally determining the fractional volume, density, and oxygen content of the organic matter in the formation, and the combined mineral-organic matter density, and combining this additional information with the previously-listed determinations. The oxygen content of the organic matter may be assumed and the density of the organic matter may be assigned a constant value. The fractional volume of organic matter is calculated by using the previously determined carbon content multiplied by a weight to volume conversion factor. The combined mineral-organic matter density is determined from the densities and volumes of the organic matter and minerals. The organic matter volume may be combined with the other information to provide the alternative total carbon content determination. By eliminating the carbon contributed to the total carbon determination by formation carbonates, total organic carbon may be determined and source rocks identified and evaluated.