摘要:
One or more components of a wellbore drilling assembly utilize a modular construction to facilitate assembly, disassembly, repair and/or maintenance of a wellbore drilling assembly and/or to extend the overall operating capabilities of the drilling assembly. In one embodiment, a modular construction is used for an APD Device, a motor driving the modular APD Device, a comminution device, and an annular seal. Individual modules can be configure have different operating set points, operating parameters and characteristics (e.g., rotational speeds, flow rates, pressure differentials, etc.) and/or different responses to given environmental factors or conditions (e.g., pressure, temperature, wellbore fluid chemistry, etc.). In one embodiment, the high-pressure seals used in conjunction with the APD Device and/or motor is a hydrodynamic seal that provides a selected leak or flow rates. Optionally, the seal is modular to provide different degrees of leak rates and/or different functional characteristics.
摘要:
An active differential pressure device (APD device) in fluid communication with a returning fluid creates a differential pressure across the device, which controls pressure below the APD Device. In embodiments, a control unit controls the APD Device to provide a selected pressure differential at a wellbore bottom, adjacent a casing shoe, in an intermediate wellbore location, or in a casing. In one arrangement, the control system is pre-set at the surface such that the APD Device provides a substantially constant pressure differential. In other arrangements, the control system adjusts an operating parameter of the APD Device to provide a desired pressure differential in response to one or more measured parameters. Devices such as an adjustable bypass can be used to control the APD Device. In other embodiments, one or more flow control devices coupled to the return fluid reduce the effective pressure differential provided by the APD Device.
摘要:
Methods and control systems are provided for a wellbore drilling system having an active differential pressure device (APD device) in fluid communication with a returning fluid. The APD Device creates a differential pressure across the device, which reduces the pressure below or downhole of the device. In embodiments, a control unit controls the APD Device in real time via a data transmission system. In one arrangement, the data transmission system includes data links formed by conductors associated with the drill string. The conductors, which may include electrical wires and/or fiber optic bundles, couple the control unit to the APD Device and other downhole tools such as sensors. In other arrangements, the data link can include data transmission stations that use acoustic, EM, and/or RF signals to transfer data. In still other embodiments, a mud pulse telemetry system can be used in transfer data and command signals.
摘要:
Methods and control systems are provided for a wellbore drilling system having an active differential pressure device (APD device) in fluid communication with a returning fluid. The APD Device creates a differential pressure across the device, which reduces the pressure below or downhole of the device. In embodiments, a control unit controls the APD Device to provide a selected pressure differential at a wellbore bottom, adjacent a casing shoe, in an intermediate wellbore location, or in a casing. In one arrangement, the control system is pre-set at the surface such that the APD Device provides a substantially constant pressure differential. In other arrangements, the control system measures one or more parameters (e.g., wellbore pressure, formation parameters, BHA parameters, etc.) and adjusts an operating parameter of the APD Device to provide a desired pressure differential. Devices such as an adjustable bypass can be used to control the APD Device.
摘要:
Methods and control systems are provided for a wellbore drilling system having an active differential pressure device (APD device) in fluid communication with a returning fluid. The APD Device creates a differential pressure across the device, which reduces the pressure below or downhole of the device. In embodiments, a control unit controls the APD Device to provide a selected pressure differential at a wellbore bottom, adjacent a casing shoe, in an intermediate wellbore location, or in a casing. In one arrangement, the control system is pre-set at the surface such that the APD Device provides a substantially constant pressure differential. In other arrangements, the control system measures one or more parameters (e.g., wellbore pressure, formation parameters, BHA parameters, etc.) and adjusts an operating parameter of the APD Device to provide a desired pressure differential. Devices such as an adjustable bypass can be used to control the APD Device.
摘要:
A wellbore drilling system has an umbilical that carries a drill bit in a wellbore. Drilling fluid pumped into the umbilical discharges at the drill bit bottom and returns through an annulus between the umbilical and the wellbore carrying entrained drill cuttings. An active differential pressure device (APD device), such as a jet pump, turbine or centrifugal pump, in fluid communication with the returning fluid creates a differential pressure across the device, which alters the pressure below or downhole of the device. The APD device can be driven by a positive displacement motor, a turbine, an electric motor, or a hydraulic motor. A controller controls the operation of the APD device in response to programmed instructions and/or one or more parameters of interest detected by one or more sensors. A preferred system is a closed loop system that maintains the wellbore at under-balance condition, at-balance condition or over-balance condition.
摘要:
An APD Device provides a pressure differential in a wellbore to control dynamic pressure loss while drilling fluid is continuously circulated in the wellbore. A continuous circulation system circulates fluid both during drilling of the wellbore and when the drilling is stopped. Operating the APD Device allows wellbore pressure control during continuous circulation without substantially changing density of the fluid. The APD Device can maintain wellbore pressure below the combined pressure caused by weight of the fluid and pressure losses created due to circulation of the fluid in the wellbore, maintain the wellbore at or near a balanced pressure condition, maintain the wellbore at an underbalanced condition, reduce the swab effect in the wellbore, and/or reduce the surge effect in the wellbore. A flow restriction device that creates a backpressure in the wellbore annulus provides surface control of wellbore pressure.
摘要:
One exemplary APD Device is used with a liner drilling assembly to control wellbore pressure. The APD Device reduces a dynamic pressure loss associated with the drilling fluid returning via a wellbore annulus. Another exemplary APD Device is used to control pressure in a wellbore when deploying wellbore equipment, including running, installing and/or operating wellbore tools. The APD Device is set to reduce a dynamic pressure loss associated with a circulating fluid. The APD Device can also be configured to reduce a surge effect associated with the running of the wellbore equipment. Still another APD Device is used to control pressure in a wellbore when completing or working over a well. Exemplary completion activity can include circulating fluid other than a drilling fluid, such as a gravel slurry. The APD Device can reduce the dynamic pressure loss associated with circulation of both drilling fluid and non-drilling fluid.
摘要:
One exemplary APD Device is used with a liner drilling assembly to control wellbore pressure. The APD Device reduces a dynamic pressure loss associated with the drilling fluid returning via a wellbore annulus. Another exemplary APD Device is used to control pressure in a wellbore when deploying wellbore equipment, including running, installing and/or operating wellbore tools. The APD Device is set to reduce a dynamic pressure loss associated with a circulating fluid. The APD Device can also be configured to reduce a surge effect associated with the running of the wellbore equipment. Still another APD Device is used to control pressure in a wellbore when completing or working over a well. Exemplary completion activity can include circulating fluid other than a drilling fluid, such as a gravel slurry. The APD Device can reduce the dynamic pressure loss associated with circulation of both drilling fluid and non-drilling fluid.
摘要:
A system for reverse circulation in a wellbore includes equipment for supplying drilling fluid into the wellbore bit via at least an annulus of the wellbore and returning the drilling fluid to a surface location via at least a bore of a wellbore tubular. The system also includes devices for controlling the annulus pressure associated with this reverse circulation. An active pressure differential device may increase the pressure wellbore annulus to at least partially offset a circulating pressure loss. Alternatively, the system may include devices for decreasing the pressure in the annulus of the wellbore.