摘要:
A method of processing a rotor. The rotor is formed by casting an ingot to have first and second regions formed of different alloys that intermix during casting to define a transition zone therebetween. The ingot is forged to yield a rotor forging that contains axially-aligned first and second alloy regions and a transition zone therebetween. A three-dimensional approximation of the transition zone is generated, which can be used to predict the effects of the transition zone on the dynamic performance of a rotor machined from the forging.
摘要:
A process for producing a rotor, the rotor formed thereby, as well as turbines in which such a rotor is installed. The rotor is formed by casting an ingot to have first and second regions formed of different alloys that intermix during casting to define a transition zone therebetween. The ingot is forged to yield a rotor forging that contains axially-aligned first and second alloy regions and a transition zone therebetween. The effects of the transition zone can be mitigated by modeling the transition zone and then off-center machining the forging so that the axis of rotation of the machined monolithic rotor is more centrally located with respect to the transition zone.
摘要:
A monolithic rotor comprising first and second rotor regions axially aligned within the monolithic rotor and a transition zone therebetween. The first and second rotor regions are formed of different alloys and the transition zone having a composition that differs from and varies between the first and second rotor regions. The first rotor region is located within a high pressure region of the monolithic rotor and is formed from an alloy chosen from the group consisting of CrMoV low alloy steels, martensitic stainless steels containing about 11 to about 14 weight percent chromium, Fe—Ni alloys, and nickel-base alloys. The second rotor region is located within a low pressure region of the monolithic rotor and is formed from an alloy chosen from the group consisting of NiCrMoV low alloy steels and martensitic stainless steels containing about 11 to about 14 weight percent chromium.
摘要:
To achieve improved ultrasonic testing coverage of a finished machined component, the present invention applies a method for modifying a finished machine component forging for ultrasonic inspection. A forging envelope may be constructed in the shape of a right circular cylinder that surrounds a machine component forging. Then material may be added to the forging envelope in the direction of the forging equal to about 2 times a wavelength of an ultrasonic inspection device. Additional material may then be added to an inspection surface of the forging envelope equal to the dimension of a transducer dead zone, if the forging cannot be inspected ultrasonically from two opposing surfaces in the forged direction. Lastly, material may be added to the forging envelope in a direction perpendicular to the forging direction equal to a transducer footprint plus the break edge radius.
摘要:
To achieve improved ultrasonic testing coverage of a finished machined component, the present invention applies a method for modifying a finished machine component forging for ultrasonic inspection. A forging envelope may be constructed in the shape of a right circular cylinder that surrounds a machine component forging. Then material may be added to the forging envelope in the direction of the forging equal to about 2 times a wavelength of an ultrasonic inspection device. Additional material may then be added to an inspection surface of the forging envelope equal to the dimension of a transducer dead zone, if the forging cannot be inspected ultrasonically from two opposing surfaces in the forged direction. Lastly, material may be added to the forging envelope in a direction perpendicular to the forging direction equal to a transducer footprint plus the break edge radius.
摘要:
A method to determine a depth of an internal feature in a forging using an ultrasonic transducer including: collecting data on echoes reflected by the internal feature of ultrasonic signals transmitted into the forging; correcting the collected data to compensate for attenuation of the echoes and signals in the forging, and determining a depth of the internal feature in the forging.
摘要:
A method and apparatus for visually detecting and measuring retention assembly tightness are disclosed. In an embodiment, an optical device is used to obtain at least an image of a retention assembly, the optical device being insertable into a slot between two stator core laminations and directable toward a side view of the retention assembly. The image is displayed on a display, and a measurer is used to determine a tightness of a retention assembly.
摘要:
A method for non-destructively inspecting a composite structure with a single ultrasonic transducer includes determining a calibration amplitude of ultrasonic transmissions emitted by the single ultrasonic transducer to a reflector in a fluid-filled immersion tank and received back at the single ultrasonic transducer. The method also includes inserting the composite structure into the fluid-filled immersion tank between the reflector and the single ultrasonic transducer. In addition, the method includes scanning the composite structure with the single ultrasonic transducer to measure ultrasonic amplitudes for sound waves traveling through the composite structure, reflecting off the reflector plate and then traveling back through the structure to the single ultrasonic transducer. The measured ultrasonic amplitudes are corrected using the calibration amplitude and other measured transmission losses, and the corrected ultrasonic amplitudes are utilized to generate either or both a digital image showing porosity or a measurement of porosity of the composite structure.
摘要:
A method and system for determining the fiber volume fraction of a composite structure. The system includes a unit for ultrasonically determining the porosity volume fraction in the article, and a unit for calculating the volume fraction of the fibrous reinforcement material in the article based on the porosity volume fraction in the article and the mass densities of the article and the fiber and matrix materials within the article. The method entails determining the mass density of the article, obtaining the mass densities of the fiber material and the matrix material, ultrasonically determining the porosity volume fraction in the article, and then calculating the volume fraction of the fibrous reinforcement material in the article based on the porosity volume fraction in the article, the mass density of the article, the mass density of the matrix material, and the mass density of the fiber material.
摘要:
A transducer position adjustment method, performed to compensate for initial ultrasonic beam alignment error, includes the steps of providing a manipulator of an ultrasonic immersion testing system having a pointing direction and supporting a transducer generating an ultrasonic beam, providing a calibration body defining a target thereon, immersing the transducer of the manipulator and the calibration body in a coupling fluid in an immersion tank of the system, setting the manipulator initially at a first position such that the pointing direction of the manipulator is aligned with the calibration body target at known coordinates, and adjusting the manipulator subsequently to a second position such that the ultrasonic beam of the transducer is brought into alignment with the calibration body target at the known coordinates for initiating an inspection of a test object after replacing the calibration body with the test object.