摘要:
A semiconductor device includes a fin extending from a substrate, a first source/drain feature, a second source/drain feature, and a gate structure on the fin. A distance between the gate structure and the first source/drain feature is different from a distance between the gate structure and the second source/drain feature.
摘要:
A high voltage metal-oxide-metal (HV-MOM) layout includes a first conductive element. The first element includes a first leg extending in a first direction, a second leg connected to the first leg, the second leg extending in a second direction different from the first direction, and a third leg connected to the second leg, the third leg extending in a first direction. The HV-MOM layout further includes a second conductive element separated from the first conductive element by a space. The second conductive element includes a serpentine structure, wherein the serpentine structure is enclosed on at least three sides by the first conductive element. The HV-MOM layout further includes a dielectric material filling the space between the first conductive element and the second conductive element.
摘要:
A high voltage metal-oxide-metal (HV-MOM) device includes a substrate, a deep well in the substrate and at least one high voltage well in the substrate over the deep well. The HV-MOM device further includes a dielectric layer over each high voltage well of the at least one high voltage well and a gate structure over the dielectric layer. The HV-MOM device further includes an inter-layer dielectric (ILD) layer over the substrate, the ILD layer surrounding the gate structure. The HV-MOM device further includes a first inter-metal dielectric (IMD) layer over the ILD layer and a first metal feature in the first IMD layer, wherein the first metal feature is part of a MOM capacitor.
摘要:
A method of fabricating a semiconductor device includes forming a gate structure, a first edge structure and a second edge structure on a semiconductor strip. The method further includes forming a first source/drain feature between the gate structure and the first edge structure. The method further includes forming a second source/drain feature between the gate structure and the second edge structure, wherein a distance between the gate structure and the first source/drain feature is different from a distance between the gate structure and the second source/drain feature. The method further includes implanting a buried channel in the semiconductor strip, wherein the buried channel is entirely below a top-most surface of the semiconductor strip, a maximum depth of the buried channel is less than a maximum depth of the first source/drain feature, and a dopant concentration of the buried channel is highest under the gate structure.
摘要:
A method includes forming a gate structure, a first edge structure and a second edge structure on a semiconductor strip. The method includes forming a first source/drain feature between the gate structure and the first edge structure; and a second source/drain feature between the gate structure and the second edge structure. A distance between the gate structure and the first source/drain feature is from about 1.5 to about 4.5 times greater than a distance between the gate structure and the second source/drain feature. The method includes implanting a buried channel in the semiconductor strip. A top surface of the buried channel is spaced from a top surface of the semiconductor strip. A bottom surface of the buried channel is closer to the top surface of the semiconductor strip than a bottom surface of the first source/drain feature. A dopant concentration of the buried channel is highest under the gate structure.