Regeneration rotary kiln
    1.
    发明授权

    公开(公告)号:US10094559B2

    公开(公告)日:2018-10-09

    申请号:US14902273

    申请日:2014-10-02

    摘要: Provided is a regeneration rotary kiln capable of reducing the proportion of combustible gas in waste gas and capable of reducing cost for generating superheated steam.A regeneration rotary kiln (1) is characterized by including: a superheated steam generation unit (2) that generates superheated steam; a tube (3) capable of rotating about its axis and having a heating section (A) where, while the superheated steam is being supplied thereto, carbon fiber reinforced plastic (10) containing a matrix resin and carbon fibers is heated to generate combustible gas (10G) from the matrix resin to extract the carbon fibers (10S) from the carbon fiber reinforced plastic (10); a first combustion chamber (43a) that is placed outside the tube (3) and that burns the gas (10G) introduced from the heating section (A) to heat the heating section (A); and a second combustion chamber (43b) that burns the gas (10G) introduced from the first combustion chamber (43a) to supply heat for generating the superheated steam.

    Environmental resistant coating member

    公开(公告)号:US10889526B2

    公开(公告)日:2021-01-12

    申请号:US16083386

    申请日:2017-02-21

    摘要: An environmental resistant coating member includes a SiC long fiber-reinforced ceramics substrate and an environmental barrier coating layer provided on the whole surface of the SiC long fiber-reinforced ceramics substrate. The environmental barrier coating layer includes a SiAlON bonding layer laminated on the SiC long fiber-reinforced ceramics substrate, a mullite layer laminated on the SiAlON bonding layer, a reaction inhibition layer laminated on the mullite layer, and a gradient layer formed on the reaction inhibition layer that gradually changes from a rare-earth disilicate to a rare-earth monosilicate. The reaction inhibition layer includes at least one of an alumina layer, a garnet layer, and a rare-earth (mono)silicate layer. When the reaction inhibition layer includes two or more of these layers, the layers are formed in the order of the alumina layer, the garnet layer, and the rare-earth (mono)silicate layer from a mullite layer side toward a gradient layer side.