摘要:
Methods are provided for repairing a defect on a silicon-containing substrate. The method may include applying a powder mixture into the defect of an existing coating on a surface of the silicon-containing substrate, wherein the powder mixture comprises silicon and germanium at a Ge mole fraction of 0.01 to 0.3; and heat treating the powder mixture within the defect at a sintering temperature that is 1150° C. to 1400° C. to form a repaired bondcoat within the defect. Repaired components are also provided that include a repaired bondcoat formed within the defect on the silicon-containing substrate, wherein the repaired bondcoat comprises a silicon-germanium phase comprising a Ge mole fraction of germanium of 0.01 to 0.3 and a Si mole fraction of silicon of 0.7 to 0.99.
摘要:
A method for coating a substrate includes spraying a combination of powders. The combination of powders includes: Hf0.5Si0.5O2; Zr0.5Si0.5O2; and, optionally, at least one of HfO2 and ZrO2. A molar ratio of said Hf0.5Si0.5O2 and HfO2 combined to said Zr0.5Si0.5O2 and ZrO2 combined is from 2:1 to 4:1. A molar ratio of said Hf0.5Si0.5O2 to said HfO2 is at least 1:3.
摘要:
A method for coating a ceramic matrix composite part with an environmental barrier, the method including a) applying, to a surface of the part, a coating composition including a first powder of a rare earth silicate and a second powder including boron, the coating composition having a ratio R=[mass of the second powder]/[mass of the first powder] of between 0.1% and 5%, and b) sintering the first and second powders to obtain the environmental barrier on the part.
摘要:
There is provided a plasma-resistant member, including: a base material; and a layer structural component formed by aerosol deposition at a surface of the base material, the layer structural component being plasma-resistant and including an yttria polycrystalline body, the yttria polycrystalline body included in the layer structural component having a crystal structure in which cubic and monoclinic coexist, a proportion of monoclinic to cubic inside the yttria polycrystalline body included in the layer structural component being not less than 0% and not more than 60%, a crystallite size of the yttria polycrystalline body included in the layer structural component being not less than 8 nm and not more than 50 nm.
摘要:
A refractory material that can withstand high temperatures in an oxidizing medium and containing at least: a first constituent corresponding to hafnium, or to a non-oxide compound of hafnium, or circular in a or a non-oxide compound of zirconium, or corresponding to a mixture of at least two metals and/or compounds selected from hafnium a non-oxide compound of hafnium, zirconium, and a non-oxide compound of zirconium; a second constituent corresponding to the boron or to a non-oxide compound of boron, or corresponding to a mixture of boron and a non-oxide compound of boron; and a third constituent corresponding to a rare earth RE or to a non-oxide compound of the rare earth RE, or corresponding to a mixture of rare earth RE and a non-oxide compound of the rare earth RE, where RE is selected from scandium, yttrium, and the lanthanides. The material contains neither silicon nor a compound of silicon.
摘要:
Coatings comprising metallurgical slag are applied to refractory substrates having molten metal-contacting surfaces to create a chemically active and viscous surface that dramatically increases the ability of the treated substrate to remove slag, dross and other inclusions from a base metal alloy as it passes through or contacts the substrate. The refractory substrates include molten metal filters used by foundries and metal casters such as reticulated ceramic foam, cellular/honeycomb, silica mesh, and others that rely on their physical or sieving ability to remove particulate impurities from the base alloy being cast. The chemically active surfaces significantly increase filtration efficiency through a treatment process tailored to the specific chemistry of the alloy being filtered, such as ferrous metals that include iron, steel and more. Other refractory substrates such as aluminum oxide, magnesium oxide, zirconium oxide, aluminum silicate, silicon carbide (as common with reticulated ceramic foam filters) and the like may also include the coatings.
摘要:
To manufacture a ceramic article, a ceramic body comprising Al2O3 is roughened to a roughness of approximately 140 micro-inches (μin) to 240 μin. The ceramic body is subsequently cleaned and then coated with a ceramic coating. The ceramic coating comprises a compound of Y4Al2O9 (YAM) and a solid solution of Y2-xZrxO3. The ceramic coating is then polished.
摘要翻译:为了制造陶瓷制品,将包含Al 2 O 3的陶瓷体粗糙化至约140微英寸(μin)至240μin的粗糙度。 随后清洁陶瓷体,然后用陶瓷涂层涂覆。 陶瓷涂层包含Y4Al2O9(YAM)的化合物和Y2-xZrxO3的固溶体。 然后抛光陶瓷涂层。
摘要:
A method of manufacturing a surface-modified carbon material is provided that can form a layer of a metal or the like on the surface in a simple manner and with adhesion performance. The surface-modified carbon material is also provided. The method is characterized by heat-treating a carbon substrate together with a carbon member other than the carbon substrate, the carbon substrate embedded in a surface modifying agent comprising a pyrolytic hydrogen halide generating agent and metal particles containing a transition metal. More specifically, a carbon substrate (2) is embedded in powder (3) containing a pyrolytic hydrogen halide generating agent such as ammonium chloride and metal particles containing a transition metal such as stainless steel, and the carbon substrate (2) is heat-treated together with a carbon member other than the carbon substrate, such as a the graphite crucible (6).
摘要:
A carbon material, a jig, and a method of manufacturing the carbon material are provided that can prevent dust emission and also improve the temperature resistance under a nitrogen atmosphere. In a carbon material having a carbon substrate and a metal carbide layer formed on a surface of the carbon substrate, the metal carbide layer includes molybdenum carbide and/or iron carbide. The carbon substrate embedded in a surface modifying agent containing a pyrolytic hydrogen halide generating agent and molybdenum particles and/or iron particles is heat-treated together with a carbon member other than the carbon substrate.
摘要:
Dry mix for treating refractory substrates, comprising combustible particles of at least one oxidizable substance which, in the presence of oxygen, gives rise to an exothermic reaction, and particles of at least one other substance, wherein these particles form together, during said exothermic reaction, a coherent mass capable of adhering to and/or interacting with the treated substrate, characterized in that it comprises, as particles of at least one other substance, particles of at least one expanding substance, in that the dry mix without the particles of this at least one expanding substance has a first bulk density and in that the mix comprising said at least one expanding substance has a second bulk density lower than said first bulk density.