Abstract:
In an illustrative embodiment of the present invention, a reference signal including pilot information is transmitted from a base station to one or multiple field units over a pilot channel. A message is also sent to the field units over a paging channel to indicate an effective radiated power level at which the reference signal is transmitted on the pilot channel. Based on a received power level of the reference signal at a field unit and the effective radiated power level of the reference signal, a forward path loss is estimated at the field unit for the forward link between the base station and field unit. Assuming the path loss in the reverse link is approximately the same as the estimated forward link path loss, the field unit can transmit, a reply message in the reverse link so that the base station generally receives a message at-a desired power level.
Abstract:
A technique for efficient implementation of pilot signals on a reverse link in a wireless communication system. An access channel is defined for the reverse link such that within each frame, or epoch, a portion is dedicated to sending only pilot symbols. Another portion of the frame is reserved for sending mostly data symbols; however, within this second portion of the frame, additional pilot symbols are interleaved among the data symbols. The pilot symbol or preamble portion of the access channel frame allows for efficient acquisition of the access signal at the base station, while providing a timing reference for determining the effects of multipath fading. In particular, a pilot correlation filter provides a phase estimate from the pilot symbols in the preamble portion, which is then used to decode the data symbols in the payload portion. An access acquisition portion of the receiver uses the phase estimates provided by the pilot correlation filter to process the output of a data symbol correlation filter. The additional pilot symbols embedded in the payload portion are used in a cross product operation to further resolve the effects of multipath fading.
Abstract:
An antenna assembly includes at least two active or main radiating omni-directional antenna elements arranged with at least one beam control or passive antenna element used as a reflector. The beam control antenna element(s) may have multiple reactance elements that can electrically terminate it to adjust the input or output beam pattern(s) produced by the combination of the active antenna elements and the beam control antenna element(s). More specifically, the beam control antenna element(s) may be coupled to different terminating reactances to change beam characteristics, such as the directivity and angular beamwidth. Processing may be employed to select which terminating reactance to use. Consequently, the radiator pattern of the antenna can be more easily directed towards a specific target receiver/transmitter, reduce signal-to-noise interference levels, and/or increase gain by using Radio Frequency (RF), Intermediate Frequency (IF), or baseband processing. A Multiple-Input, Multiple-Output (MIMO) processing technique may be employed to operate the antenna assembly with simultaneous beam patterns.
Abstract:
In an illustrative embodiment of the present invention, a reference signal including pilot information is transmitted from a base station to one or multiple field units over a pilot channel. A message is also sent to the field units over a paging channel to indicate an effective radiated power level at which the reference signal is transmitted on the pilot channel. Based on a received power level of the reference signal at a field unit and the effective radiated power level of the reference signal, a forward path loss is estimated at the field unit for the forward link between the base station and field unit. Assuming the path loss in the reverse link is approximately the same as the estimated forward link path loss, the field unit can transmit a reply message in the reverse link so that the base station generally receives a message at a desired power level.
Abstract:
Multiple field units in a CDMA system are synchronized for communication with a base station using a shared forward and reverse link channel. Each field unit is assigned a time slot in a forward link channel to receive messages from the base station. Likewise, each field unit is assigned a time slot on a common reverse link channel for transmitting messages to the base station. Timing alignment among each of many field units and the base station is achieved by analyzing messages received at the base station in a corresponding time slot from each field unit. Thereafter, a message is transmitted in a corresponding time slot to a particular field unit from the base station for adjusting its timing so that future messages transmitted from the field unit are received in the appropriate time slot at the base station. In this way, minimal resources are deployed to maintain communication and precise synchronization between a base station and each of multiple users, minimizing collisions between field units transmitting in adjacent time slots on the reverse link.
Abstract:
Data rate allocation decisions are made for a communications channel, such as a wireless reverse link connection. A first parameter used in this determination is a path loss, which is determined by the following process. First, a message is sent from a first station to a second station, such as on a paging channel. The message indicates a forward Effective Radiated Power (ERP) of a pilot signal transmitted by the first station. The second station then determines the received signal strength of this pilot signal, taking into account receiver gains. The path loss can then be estimated by the second station as the difference between the forward ERP data value that it received and the detected received pilot power. The second station also then preferably determines a transmit power level when transmitting a message back to the first station. This transmit power level information is encoded as a digital data word together with the forward path loss information as calculated by the first station. Upon receipt of these two pieces of information by the first station, the forward path loss estimate as calculated by the second station, and the output power value of the second station, the first station can then determine the amount of excess power available at the field unit. This excess power difference is indicative of the amount of dynamic range available in the transmit power amplifier in the particular second station. With this information, the first station can then make a determination as to whether coding rates which require a higher dynamic range will be acceptable for use by the particular second station.
Abstract:
Multiple field units in a CDMA system are synchronized for communication with a base station using shared forward and reverse link channels. In an illustrative embodiment, each field unit is assigned a time slot in a forward link channel to receive messages from the base station. Likewise, each field unit is assigned a time slot on a common reverse link channel for transmitting messages to the base station. Timing alignment and power level control among each of many field units and the base station is achieved by analyzing messages received at the base station in a corresponding time slot as transmitted by each field unit. Thereafter, a message is transmitted from the base station in a corresponding time slot to a particular field unit for adjusting its timing or power level so that future messages transmitted from the field unit are received in the appropriate time slot at the base station at a desired power level. In this way, minimal resources are deployed to maintain communication and precise synchronization between a base station and each of multiple users, minimizing collisions between field units transmitting in adjacent time slots on the reverse link. This method reduces the frequency a field unit must rely on the use of a slotted aloha random access channel according to IS-95.
Abstract:
The present invention provides for making code rate adjustments and modulation type adjustments in a pseudonoise (PN) encoded CDMA system. Coding rate adjustments may be made by changing the number of information bits per symbol, or Forward Error Code (FEC) coding rate. A forward error correction (FEC) block size is maintained at a constant amount. Therefore, as the number of information bits per symbol are increased, an integer multiple of bits per epoch is always maintained. The scheme permits for a greater flexibility and selection of effective data rates providing information bit rates ranging from, for example, approximately 50 kilobits per second to over 5 mega bits per second (Mbps) in one preferred embodiment.
Abstract:
In an illustrative embodiment of the present invention, a first channel is allocated for transmitting sporadically generated messages from multiple field units to a base station. The first channel is preferably divided into time slots in which a field unit transmits an access request message to the base station for establishing a communication link. In response to an access request message, feedback information is provided from the base station to multiple field units indicating whether a collision was detected on the first channel for a message transmitted in a previous time slot. In an instance when a collision is detected, the field unit will re-transmit an access request message at a previous power level setting based on a random back off time. If no collision is detected and the base station fails to transmit an acknowledgment message from the base station to the access requesting field unit, the power output level of the field unit is increased for successive message transmissions until the message is received.
Abstract:
A technique for a time division multiplex system in which access to shared broadcast communication media is granted on a demand basis. Particular connections are assigned slot times at the transmitter based on demand. However, no specific information regarding the assignment of time slots need be communicated to the receivers. The transmit side employs a forward error correction technique followed by multiplication by a cover sequence unique to each connection. All receivers listen to the broadcast transmission channel all of the time. The receiver assigned to each connection decodes the signals in such a manner that only the receiver with the correct cover sequence assigned to a particular connection will successfully decode the data associated with that connection. Data frames that fail the forward error correction process are discarded, and only those frames which are successfully decoded are passed up to a higher layer. The occurrence of an erroneously received frame is not necessarily always reported to the transmit side of the connection; only a packet level error indication is made. In this way, information containing time slot assignment need not be communicated between the transmitter and receiver, and yet data will be correctly received.