Abstract:
An all-solid-state battery includes a positive electrode layer including a positive electrode current collector layer and a positive electrode active material layer provided on the positive electrode current collector layer, a negative electrode layer including a negative electrode current collector layer and a negative electrode active material layer provided on the negative electrode current collector layer, and a solid electrolyte layer which is arranged between the positive electrode layer and the negative electrode layer and contains a solid electrolyte, wherein the all-solid-state battery includes a power storage unit in which the positive electrode layer and the negative electrode layer face each other with the solid electrolyte layer therebetween and an exterior unit, and wherein the exterior unit has an ion conductivity of 10−2 S/cm or less.
Abstract:
An all-solid-state lithium ion secondary battery including: a layered body in which a plurality of electrode layers are laminated with a solid electrolyte layer therebetween, a current collector layer and an active material layer being laminated in each of the electrode layers; and a terminal electrode that is formed such that the terminal electrode is in contact with a side surface of the layered body from which end surfaces of the electrode layers are exposed, in which the terminal electrode contains Cu, and Cu-containing regions are formed at grain boundaries that are present near the terminal electrode among grain boundaries of particles that form the active material layers and the solid electrolyte layer.
Abstract:
A solid electrolyte layer contains a first compound represented by LiaM2(PO4)3 . . . (1) and a second compound represented by M′P2O7 . . . (2), and an abundance ratio of the second compound is 0.5 volume % or more and less than 10 volume %.
Abstract:
A solid-state secondary battery includes: a positive electrode layer; a negative electrode layer; a solid-state electrolyte layer; and side margin layers arranged side by side on outer circumferences of the positive electrode layer and the negative electrode layer. The solid-state secondary battery is made of a laminated body obtained by alternately laminating the positive electrode layer of which the side margin layer arranged on the outer circumference thereof and the negative electrode layer of which the side margin layer arranged on the outer circumference thereof with the solid-state electrolyte layer arranged therebetween, and when the porosity of the side margin layers is defined as φm and the porosity of the solid-state electrolyte layer is defined as φe, the porosity ratio (φm/φe) satisfies the following Expression (1); 0.5≤(φm/φe)
Abstract:
A Li-ion conductive oxide ceramic material including a garnet-type or similar crystal structure according to an aspect of the present disclosure contains Li, La, Zr, and 0, the material further containing one or more elements selected from the group consisting of rare-earth elements, A Li-ion conductive oxide ceramic material including a garnet-type or similar crystal structure according to the other aspects of the present disclosure is represented by the following composition formula (I) Li7+xLa3Zr2-xAxO12 where A is one or more elements selected from the group consisting of rare-earth elements, and x is a number such that 0
Abstract:
A lithium ion-conducting solid electrolyte containing at least one metallic element selected from the group made of Zn, Ca, Mg, and Cu within a range of 0.01% by mass to 3.0% by mass, and a solid-state lithium ion rechargeable battery containing this lithium ion-conducting solid electrolyte.
Abstract:
An all-solid lithium ion secondary battery includes a pair of electrodes and a solid electrolyte provided between the pair of electrodes. At least one of the pair of electrodes includes an active-material layer and an intermediate layer. An active material constituting the active-material layer has a core-shell structure which has a core region and a shell region and a composition of the intermediate layer is intermediate between the solid electrolyte and the shell region.
Abstract:
A garnet-type Li-ion conductive oxide contains Li, La, Zr, and oxygen and contains at least one type of element among elements represented by M1, M2, M3, and M4. M1, M2, M3, and M4 are as follows: M1: One or more types of elements selected from the group consisting of Mg, Ca, Sr, Ba, and Zn; M2: One or more types of elements selected from the group consisting of Al, Ga, Co, Fe, and Y; M3: One or more types of elements selected from the group consisting of Sn and Ge; and M4: One or more types of elements selected from the group consisting of Ta and Nb.
Abstract:
An all-solid-state lithium ion secondary battery includes a plurality of electrode layers that are laminated with a solid electrolyte layer therebetween, a current collector layer and an active material layer being laminated in each of the electrode layers, the current collector layers contain Cu, and Cu-containing regions are formed at grain boundaries that are present near the current collector layer among grain boundaries of particles that form the active material layer.
Abstract:
An all-solid-state secondary battery has a positive electrode collector, a positive electrode active material layer, a negative electrode active material layer, a negative electrode collector, and a solid electrolyte. The solid electrolyte has an interlayer solid electrolyte located between the positive electrode active material layer and the negative electrode active material layer, and the all-solid-state secondary battery further includes a trapping layer that traps a metal of which at least one of the positive electrode collector and the negative electrode collector is formed.