Abstract:
A position detection device includes a first magnetic field generation unit for generating a first magnetic field, a second magnetic field generation unit for generating a second magnetic field, and a magnetic sensor. The position of the second magnetic field generation unit relative to the first magnetic field generation unit is variable. The magnetic sensor detects the direction of a target magnetic field at a detection position in a reference plane. The target magnetic field is a composite magnetic field of first and second magnetic field components which are respective components of the first and second magnetic fields parallel to the reference plane. The magnetic sensor includes a magnetoresistive element including a free layer and a magnetization pinned layer. In the reference plane, two directions orthogonal to the magnetization direction of the magnetization pinned layer are each different from both of directions of the first and second magnetic field components.
Abstract:
A magnetism detection device according to an embodiment of the disclosure includes a sensor section and a resistive section. The sensor section includes a first magnetism detection element. The first magnetism detection element has a first stacked structure and is configured to detect a magnetic field to be detected. The resistive section includes a first resistive element and is coupled to the sensor section. The first resistive element has the first stacked structure.
Abstract:
A magnetic sensor for detecting a component of an external magnetic field in a specific direction includes a resistor array including a plurality of resistive element sections each having a magnetoresistance element. Each of the plurality of resistive element sections has a different output characteristic curve with respect to the component of the external magnetic field in the specific direction.
Abstract:
A position detection device includes a first magnetic field generation unit for generating a first magnetic field, a second magnetic field generation unit for generating a second magnetic field, and a magnetic sensor. The position of the second magnetic field generation unit relative to the first magnetic field generation unit is variable. The magnetic sensor detects the direction of a target magnetic field at a detection position in a reference plane. The target magnetic field is a composite magnetic field of first and second magnetic field components which are respective components of the first and second magnetic fields parallel to the reference plane. The magnetic sensor includes a magnetoresistive element including a free layer and a magnetization pinned layer. In the reference plane, two directions orthogonal to the magnetization direction of the magnetization pinned layer are each different from both of directions of the first and second magnetic field components.
Abstract:
A magnetic sensor according to the invention has a magnetoresistive element having a multi-layer structure and a magnetically sensitive axis, and at least a soft magnetic body that is arranged near the magnetoresistive element. The soft magnetic body has a sloping line at least at a corner thereof, wherein the sloping line is tilted with respect to two sides of the soft magnetic body that extend to the corner, as viewed in a stacking direction of the magnetoresistive element.
Abstract:
A magnetism detection device according to an embodiment of the disclosure includes a sensor section and a resistive section. The sensor section includes a first magnetism detection element. The first magnetism detection element has a first stacked structure and is configured to detect a magnetic field to be detected. The resistive section includes a first resistive element and is coupled to the sensor section. The first resistive element has the first stacked structure.
Abstract:
A magnetic sensor includes first and second MR elements, and an electrode electrically connecting the first and second MR elements to each other. The electrode includes a first portion having a first surface, a second portion having a second surface, and a coupling portion coupling the first and second portions to each other. The first surface is in contact with an end face of the first MR element. The second surface is in contact with an end face of the second MR element. Each of the first and second surfaces has a three-hold or higher rotationally symmetric shape. The diameter of a first inscribed circle inscribed in the outer edge of the first surface and the diameter of the second inscribed circle inscribed in the outer edge of the second surface are greater than the width of the coupling portion.
Abstract:
A magnetic sensor according to the invention has a magnetoresistive element having a multi-layer structure and a magnetically sensitive axis, and at least a soft magnetic body that is arranged near the magnetoresistive element. The soft magnetic body has a sloping line at least at a corner thereof, wherein the sloping line is tilted with respect to two sides of the soft magnetic body that extend to the corner, as viewed in a stacking direction of the magnetoresistive element.
Abstract:
A magnetic sensor for detecting a component of an external magnetic field in a specific direction includes a resistor array including a plurality of resistive element sections each having a magnetoresistance element. Each of the plurality of resistive element sections has a different output characteristic curve with respect to the component of the external magnetic field in the specific direction.