Abstract:
An end fitting including an end part of the tubular sheath, an end section of each elongate element, an end vault, and a cover defining a chamber for receiving each end section. The end fitting includes at least one transducer for generating an ultrasonic wave guided in the elongate element, the generation transducer being placed on the elongate element in the receiving chamber, the generation transducer having a volume of less than 200 mm3, in particular comprised between 20 mm3 and 50 mm3.
Abstract:
A method for checking a flexible line, the flexible line including at least one layer of armors (24, 25) surrounded by an external sheath (30), the external sheath (30) delimiting an internal space (33) receiving the layer of armors (24, 25) and including at least one medium (M) at the interface between the external sheath (30) and the internal space (33). The method includes sending an ultrasonic signal on a region to be checked of the external sheath (30), and receiving the reflected signal at the interface between the region to be checked of the external sheath (30) and the internal space (33) facing the region to be checked of the external sheath (30); and analyzing the polarity of the reflected signal and determining, according to the analyzed polarity, at least the nature of the medium (M) at the interface.
Abstract:
A method for nondestructive inspection of a flexible underwater pipe capable detecting a flooding of the annular space in which the armor layers are found. The method comprises the steps of arranging in the vicinity of the external sheath at least one pair of electrodes, measuring the impedance at the terminals of the pair of electrodes, at a frequency advantageously between 10 Hz and 10 MHz, and comparing the measured impedance with reference values so as to determine the nature of the fluid contained in the annular space.
Abstract:
Method for testing a pipe for carrying hydrocarbons. The pipe has at least one internal sealing sheath made of polymer material, incorporating elements of reactive compound capable of reacting with corrosive gases contained in the hydrocarbons which diffuse radially through the sheath. The reaction forms a first layer, extending radially from the internal surface, in which the elements of reactive compound have reacted with the gases. A second layer, extends between the first layer and the external surface, in which the elements of reactive compound have not yet reacted with the gases. The method uses ultrasound to determine the position of an interface between the first and second layers to measure the progression of the diffusion of the gases through the sheath.
Abstract:
Method for testing a pipe for carrying hydrocarbons. The pipe has at least one internal sealing sheath made of polymer material, incorporating elements of reactive compound capable of reacting with corrosive gases contained in the hydrocarbons which diffuse radially through the sheath. The reaction forms a first layer, extending radially from the internal surface, in which the elements of reactive compound have reacted with the gases. A second layer, extends between the first layer and the external surface, in which the elements of reactive compound have not yet reacted with the gases. The method uses ultrasound to determine the position of an interface between the first and second layers to measure the progression of the diffusion of the gases through the sheath.