Abstract:
A solid state illumination system is provided for image projection. Red, green and blue light is generated using a blue laser light source and phosphor emissions. The red, green and blue light is passed by TIR or TRIR elements of red, green and blue light channels of an X-cube prism structure for separate modulation by different spatial light modulators. The modulated red, green and blue light is passed by the TIR or TRIR elements into the X-cube and combined into a combined modulated RGB image forming light stream for image formation via projection optics onto a target imaging surface.
Abstract:
In described examples, a first TIR or RTIR element is arranged to introduce at least red light to a first spatial light modulator for modulation thereof, and a second TIR or RTIR element is arranged to introduce at least green light to a second spatial light modulator for modulation thereof. At least one of the first and second TIR or RTIR elements is arranged to introduce blue light to at least one of the first and second spatial light modulators, respectively, for modulation thereof: time-sequentially apart from the first spatial light modulator's modulation of the introduced red light, to an extent the blue light is so introduced to the first spatial light modulator; and time-sequentially apart from the second spatial light modulator's modulation of the introduced green light, to an extent the blue light is so introduced to the second spatial light modulator.
Abstract:
A solid state illumination system is provided for image projection. Red, green and blue light is generated using a blue laser light source and phosphor emissions. The red, green and blue light is passed by TIR or TRIR elements of red, green and blue light channels of an X-cube prism structure for separate modulation by different spatial light modulators. The modulated red, green and blue light is passed by the TIR or TRIR elements into the X-cube and combined into a combined modulated RGB image forming light stream for image formation via projection optics onto a target imaging surface.
Abstract:
In described examples, a first TIR or RTIR element is arranged to introduce at least red light to a first spatial light modulator for modulation thereof, and a second TIR or RTIR element is arranged to introduce at least green light to a second spatial light modulator for modulation thereof. At least one of the first and second TIR or RTIR elements is arranged to introduce blue light to at least one of the first and second spatial light modulators, respectively, for modulation thereof: time-sequentially apart from the first spatial light modulator's modulation of the introduced red light, to an extent the blue light is so introduced to the first spatial light modulator; and time-sequentially apart from the second spatial light modulator's modulation of the introduced green light, to an extent the blue light is so introduced to the second spatial light modulator.
Abstract:
In described examples, a first TIR or RTIR element is arranged to introduce at least red light to a first spatial light modulator for modulation thereof, and a second TIR or RTIR element is arranged to introduce at least green light to a second spatial light modulator for modulation thereof. At least one of the first and second TIR or RTIR elements is arranged to introduce blue light to at least one of the first and second spatial light modulators, respectively, for modulation thereof: time-sequentially apart from the first spatial light modulator's modulation of the introduced red light, to an extent the blue light is so introduced to the first spatial light modulator; and time-sequentially apart from the second spatial light modulator's modulation of the introduced green light, to an extent the blue light is so introduced to the second spatial light modulator.
Abstract:
In described examples, a first TIR or RTIR element is arranged to introduce at least red light to a first spatial light modulator for modulation thereof, and a second TIR or RTIR element is arranged to introduce at least green light to a second spatial light modulator for modulation thereof. At least one of the first and second TIR or RTIR elements is arranged to introduce blue light to at least one of the first and second spatial light modulators, respectively, for modulation thereof: time-sequentially apart from the first spatial light modulator's modulation of the introduced red light, to an extent the blue light is so introduced to the first spatial light modulator; and time-sequentially apart from the second spatial light modulator's modulation of the introduced green light, to an extent the blue light is so introduced to the second spatial light modulator.