Abstract:
In a powerline communications (PLC) network having a first node and at least a second node on a PLC channel utilizing a band including a plurality of tones, based on at least one channel quality indicator (CQI), the first node allocates for a tone map response payload only a single (1) power control bit for each of a plurality of subbands having two or more tones. The power control bit indicates a first power state or a second power state. The first node transmits a frame including the tone map response payload to the second node. The second node transmits a frame having boosted signal power for the tones in the subbands which have the first power state compared to a lower signal power for the tones in the subbands which have the second power state.
Abstract:
A method of communications includes compiling a data frame for physical layer (PHY) by a first communications device at a first communications node on a network. The data frame includes a single tone PHY header portion and a data payload portion in a set of tones including at least one tone having a frequency different from a frequency of the single tone. The PHY header portion includes tone mask identification information identifying the set of tones. The first communications device transmits the data frame over the powerline to a second communications device at a second communications node on the powerline. The second communications device receives the data frame, and decodes the data payload using the tone mask identification information in the PHY header portion.
Abstract:
A method of powerline unications in a powerline communications (PLC) network including a first node and at least a second node. The first node transmits a data frame to the second node over a PLC channel. The second node has a data buffer for storing received information. The second node runs a flow control algorithm which determines a current congestion condition or a projected congestion condition of the data buffer based on at least one congestion parameter. The current congestion condition and projected congestion condition include nearly congested and fully congested. When the current or projected congestion condition is either nearly congested or fully congested, the second node transmits a BUSY including frame over the PLC channel to at least the first node. The first node defers transmitting of any frames to the second node for a congestion clearing wait time.
Abstract:
A physical layer (PHY) data frame for use in conjunction with processor in a node, processor coupled to a program memory for storing a sequence of operating instructions. The frame has a preamble, PHY header, a MAC header and a MAC payload. The PHY header includes a destination address field having a destination address therein. The destination address is used by the processor to determine match with the node address.
Abstract:
A method of powerline communications in a powerline communications (PLC) network including a first PLC device and at least a second PLC device. The first PLC device transmits a data frame to the second node over a PLC channel. The second PLC device has a data buffer for storing received information. The second PLC device runs a flow control algorithm which determines a current congestion condition or a projected congestion condition of the data buffer based on at least one congestion parameter. The current congestion condition and projected congestion condition include nearly congested and fully congested. When the current or projected congestion condition is either nearly congested or fully congested, the second PLC device transmits a BUSY including frame over the PLC channel to at least the first PLC device. The first PLC device defers transmitting of any frames to the second PLC device for a congestion clearing wait time.