Abstract:
A load switch includes a switch input, a switch output, a first field-effect transistor (FET), and a second FET. The switch input is adapted to be coupled to a controller output of a controller. The switch output is adapted to be coupled to a controller input of the controller. The first FET has a gate and a source. The gate of the first FET is coupled to the switch input. The second FET has a gate and a source. The gate of the second FET is coupled to the source of the first FET. The source of the second FET is coupled to the switch output.
Abstract:
In some examples, this description provides for an apparatus. The apparatus includes a power switch having a power switch source configured to receive an input voltage, a power switch drain, and a power switch gate. The apparatus also includes a current sense component coupled to the power switch. The apparatus also includes a current limiting circuit coupled to the power switch gate, the power switch drain, and the current sense component. The apparatus also includes an over-current protection (OCP) circuit coupled to the power switch source, the power switch drain, and the power switch gate. The apparatus also includes an output voltage (VOUT) clamp coupled to the power switch drain and the power switch gate.
Abstract:
Input codes are sequenced at a lower-resolution linear DAC and the output is converted to a linear current waveform. A first of two interconnected analog current multipliers multiplies the linear current by itself and by the inverse of a first constant current source to create a quadratic current output. A second current multiplier multiplies the quadratic output current by the linear current and by the inverse of a second constant current source to generate a cubic current output. The quadratic and cubic currents are subtracted from the linear current to generate an approximation of the first 180 degrees of a sine wave current. Alternate (pi to 2*pi) positive-going one-half sine waves may be polarity reversed to create a complete positive-going and negative-going sine-shaped electrical current of higher resolution than is available from a sine DAC of resolution equivalent to that of the lower-resolution linear DAC.
Abstract:
Stepper motor winding current regulation methods and apparatus continuously and bi-directionally sense winding current to determine both the magnitude of the winding current and the slope of a waveform representing the winding current. The magnitude and slope information is used to more precisely control periods of current rise and characteristics of fast and slow current decay during pulse-width modulation (“PWM”) regulation cycles. Winding current rise and decay shaping is based upon the sensed magnitude of the winding current, the magnitude of the winding current regulation set-point ITRIP, whether the sensed winding current is greater than or less than ITRIP at a selected sampling time, whether the sensed winding current is increasing or decreasing when a waveform of the sensed winding current crosses over ITRIP, and whether or not the magnitude of ITRIP changes during a PWM cycle in response to a receipt of a subsequent DAC code.
Abstract:
In some examples, this description provides for an apparatus. The apparatus includes a power switch having a power switch source configured to receive an input voltage, a power switch drain, and a power switch gate. The apparatus also includes a current sense component coupled to the power switch. The apparatus also includes a current limiting circuit coupled to the power switch gate, the power switch drain, and the current sense component. The apparatus also includes an over-current protection (OCP) circuit coupled to the power switch source, the power switch drain, and the power switch gate. The apparatus also includes an output voltage (VOUT) clamp coupled to the power switch drain and the power switch gate.
Abstract:
Stepper motor winding current regulation methods and apparatus adapt a maximum blanking period to generate an adapted blanking period that is proportional to a currently-selected current regulation set-point. Sensed winding current feedback is ignored at a current regulation controller during the adapted blanking period or during a minimum blanking period, whichever longer, to avoid attempting to track noise imposed upon a sensed winding current feedback signal at an initiation of rapid current changes di/dt. Doing so may decrease ripple in the motor winding current waveform and reduce zero-crossing distortion by decreasing overshoot of the current regulation set-point by the sensed winding current.
Abstract:
Stepper motor winding current regulation methods and apparatus continuously and bi-directionally sense winding current to determine both the magnitude of the winding current and the slope of a waveform representing the winding current. The magnitude and slope information is used to more precisely control periods of current rise and characteristics of fast and slow current decay during pulse-width modulation (“PWM”) regulation cycles. Winding current rise and decay shaping is based upon the sensed magnitude of the winding current, the magnitude of the winding current regulation set-point ITRIP, whether the sensed winding current is greater than or less than ITRIP at a selected sampling time, whether the sensed winding current is increasing or decreasing when a waveform of the sensed winding current crosses over ITRIP, and whether or not the magnitude of ITRIP changes during a PWM cycle in response to a receipt of a subsequent DAC code.
Abstract:
Stepper motor winding current regulation methods and apparatus adapt a maximum blanking period to generate an adapted blanking period that is proportional to a currently-selected current regulation set-point. Sensed winding current feedback is ignored at a current regulation controller during the adapted blanking period or during a minimum blanking period, whichever longer, to avoid attempting to track noise imposed upon a sensed winding current feedback signal at an initiation of rapid current changes di/dt. Doing so may decrease ripple in the motor winding current waveform and reduce zero-crossing distortion by decreasing overshoot of the current regulation set-point by the sensed winding current.
Abstract:
Input codes are sequenced at a lower-resolution linear DAC and the output is converted to a linear current waveform. A first of two interconnected analog current multipliers multiplies the linear current by itself and by the inverse of a first constant current source to create a quadratic current output. A second current multiplier multiplies the quadratic output current by the linear current and by the inverse of a second constant current source to generate a cubic current output. The quadratic and cubic currents are subtracted from the linear current to generate an approximation of the first 180 degrees of a sine wave current. Alternate (pi to 2*pi) positive-going one-half sine waves may be polarity reversed to create a complete positive-going and negative-going sine-shaped electrical current of higher resolution than is available from a sine DAC of resolution equivalent to that of the lower-resolution linear DAC.