Abstract:
This method for determining a virtual speed vector includes the steps of acquiring (110) a sequences of images of the surrounding environment from an image sensor defining an optical projection center that is substantially stationary relative to the mobile engine, analyzing (120) at least two successive images in order to determine, in each of the two images, a point, called epipole, representing the position in said image of the optical center of the image sensor at the moment of the acquisition of the other image, and for each analyzed image, determining (130) the position of the epipole of said image on a display usable to pilot the mobile engine and displaying (130), on the display, a symbol representative of the virtual speed vector in said position.
Abstract:
Estimating the speed of an aircraft estimates three components of the speed vector (TAS, AOA, SSA) of an aircraft relative to the surrounding air. The static pressure is estimated on the basis of measurements of geographical altitude. A first intermediate variation of a linear combination of the three components of the speed vector of the aircraft relative to the surrounding air is estimated using explicitly the fact that the pressure measured by the static probe is falsified by a known quantity under the effect of the three components of this speed vector of the aircraft relative to the surrounding air. The process then estimates the three components of the speed vector of the aircraft relative to the air by likening the latter to the speed vector of the aircraft relative to an inertial reference frame and by using inertial measurements. The various estimates are fused to provide a final result.
Abstract:
Method of estimation of the speed of an aircraft relative to the surrounding air, in a reference frame tied to the aircraft estimates an estimated static pressure on the basis of measurements of geographical altitude. The process then estimates a first intermediate variation of the speed of the aircraft relative to the surrounding air using explicitly the fact that the pressure measured by the static probe is falsified by a known quantity under the effect of the speed of the aircraft relative to the surrounding air. Finally, temporal integration of the first intermediate variation of the speed of the aircraft relative to the surrounding air provides an estimated speed of the aircraft relative to the surrounding air.
Abstract:
Method of estimation of the speed of an aircraft relative to the surrounding air, in a reference frame tied to the aircraft estimates an estimated static pressure on the basis of measurements of geographical altitude. The process then estimates a first intermediate variation of the speed of the aircraft relative to the surrounding air using explicitly the fact that the pressure measured by the static probe is falsified by a known quantity under the effect of the speed of the aircraft relative to the surrounding air. Finally, temporal integration of the first intermediate variation of the speed of the aircraft relative to the surrounding air provides an estimated speed of the aircraft relative to the surrounding air.
Abstract:
This detection method is carried out after a phase for acquiring a navigation signal during a convergence phase and comprises at least one of the following steps: —determining a plurality of pilot channel periodic correlations and a plurality of data channel periodic correlations, and determining a first value as a function of these periodic correlations; —determining a plurality of pilot channel partial correlations, and determining a second value as a function of these partial correlations; —determining a plurality of shifted pilot channel correlations, and determining a third value as a function of these shifted pilot channel correlations. The convergence phase further comprises the step for determining a wrong synchronization when at least one of the first value, the second value, and the third value exceeds a predetermined threshold.
Abstract:
A system comprises: onboard a first craft, called host craft, a triplet of antennas comprising a transmitting and receiving antenna and two transmitting antennas, a transmission chain that can be successively coupled to each antenna of the triplet of antennas by a radiofrequency switch, a reception chain that can be coupled to the transmitting and receiving antenna, and a processing device intended to determine a relative angular position between, on the one hand, the host craft and, on the other hand, a plurality of spacecraft, called companion craft, from measurements of path differences performed and transmitted by the companion craft; onboard the companion craft, a transmitting and receiving antenna, a transmission chain and a reception chain coupled to the transmitting and receiving antenna and a measurement device intended to measure path differences between three signals originating from the three antennas of the triplet of antennas of the host craft.
Abstract:
A method of calculating a speed of an aircraft, a method for calculating a protection radius, a positioning system and an associated aircraft are disclosed. In one aspect, the method includes obtaining a measured speed of the aircraft and obtaining a measured position of the aircraft, associated with a reliability protection radius related to position. The method also includes calculating, by a correction loop, a corrected speed, wherein the calculation of the corrected speed includes calculating a calculated position by integration of the corrected speed, and correcting the measured speed as a function of a difference between the calculated position and the measured position. The method further comprising calculating a reliability protection radius related to the corrected speed.
Abstract:
Estimating the speed of an aircraft estimates three components of the speed vector (TAS, AOA, SSA) of an aircraft relative to the surrounding air. The static pressure is estimated on the basis of measurements of geographical altitude. A first intermediate variation of a linear combination of the three components of the speed vector of the aircraft relative to the surrounding air is estimated using explicitly the fact that the pressure measured by the static probe is falsified by a known quantity under the effect of the three components of this speed vector of the aircraft relative to the surrounding air. The process then estimates the three components of the speed vector of the aircraft relative to the air by likening the latter to the speed vector of the aircraft relative to an inertial reference frame and by using inertial measurements. The various estimates are fused to provide a final result.
Abstract:
A method of calculating a speed of an aircraft, a method for calculating a protection radius, a positioning system and an associated aircraft are disclosed. In one aspect, the method includes obtaining a measured speed of the aircraft and obtaining a measured position of the aircraft, associated with a reliability protection radius related to position. The method also includes calculating, by a correction loop, a corrected speed, wherein the calculation of the corrected speed includes calculating a calculated position by integration of the corrected speed, and correcting the measured speed as a function of a difference between the calculated position and the measured position. The method further comprising calculating a reliability protection radius related to the corrected speed.
Abstract:
This method for determining a virtual speed vector includes the steps of acquiring (110) a sequences of images of the surrounding environment from an image sensor defining an optical projection center that is substantially stationary relative to the mobile engine, analyzing (120) at least two successive images in order to determine, in each of the two images, a point, called epipole, representing the position in said image of the optical center of the image sensor at the moment of the acquisition of the other image, and for each analyzed image, determining (130) the position of the epipole of said image on a display usable to pilot the mobile engine and displaying (130), on the display, a symbol representative of the virtual speed vector in said position.