Abstract:
A method and system for aiding piloting when selecting a trajectory of approach of an airport or airfield, implemented on at least one processor, includes a first step of selecting a landing airport or airfield, and a second step of determining, for said landing airport or airfield, all or part of the possible trajectories of approach associated with a landing runway, on the basis of a database of the airports or airfields. A third step determines, for at least one of the possible approaches, whether or not said approach is compatible with an angular guidance mode, by geometrical analysis of the approach; and a fourth step displays all of said possible approaches, for said landing airport or airfield, and of displaying the compatibility with said angular guidance mode for the approaches analyzed.
Abstract:
In the field of air navigation, a computer-implemented method includes loading an initial active flight plan for an aircraft comprising a first approach procedure to a runway up to a missed approach point ending between the missed approach point and a final point; loading a secondary flight plan comprising an approach procedure to the runway between the missed approach point and the runway, and a second missed approach procedure at the end of the approach, and ending at a second final point; receiving an instruction from an operator of the aircraft to link the initial active flight plan and the secondary flight plan; in the event of a go-around by the operator at the latest at the missed approach point, activating the missed approach procedure; otherwise, automatically selecting the secondary flight plan as active flight plan and activating the second approach.
Abstract:
A method and system is provided for determining the compatibility of an approach, to a landing runway, with an angular guidance mode, the approach being compatible with a linear guidance mode, the angular guidance being characterized by a lateral angle of precision, the linear guidance being characterized by a lateral divergence of precision. The method is implemented on a flight management system deployed aboard an aircraft and comprising a first step of determining a first distance representative of a maximum distance of use of the angular guidance, on the basis of the lateral angle of precision and of the lateral divergence of precision.
Abstract:
A method for assisting in the navigation of an aircraft comprises steps of calculating and displaying a linear deviation on a first linear section and an angular deviation on a second angular section. The method comprises a step of calculation of an anticipated deviation of the aircraft, expressed linearly or angularly, projected to a time DT, characteristic of a reaction time of the aircraft, and of a statistical error distribution associated with this anticipated deviation; and a step of calculation of a probability of exceeding a predetermined target deviation, by means of the anticipated deviation and of the statistical error distribution. The method also comprises a crew alert when the probability is above a predetermined threshold.
Abstract:
A method for assisting in the navigation of an aircraft comprises steps of calculating and displaying a linear deviation on a first linear section and an angular deviation on a second angular section. The method comprises a calculation step for converting an angular deviation into an equivalent linear deviation, and, conversely, converting a linear deviation into an equivalent angular deviation. The method comprises a step of graphic representation, called unified monitoring, intended for the crew, of a deviation of the aircraft, on a lateral deviation axis and a vertical deviation axis; each of the deviations, lateral and vertical, being able to be represented on a linear scale, an angular scale or a mixed scale.