Abstract:
A method for identifying an obstacle (O) in the laser beam (F) of a lidar system includes: commanding the transmission of a laser beam (F); and receiving a lidar signal (S) corresponding to the reflection of the beam (F) on a diffuser present in the beam (F). The detection method further includes: evaluating a set of first parameters of the lidar signal, the set of first parameters including at least an amplitude and a duration, a first detection moment being defined for the lidar signal (S), the duration being defined at each moment as the time elapsed since the first detection moment; identifying an obstacle (O) present in the beam (F) when the amplitude is greater than a first threshold and the duration is greater than a second threshold; and decreasing the power of the beam (F).
Abstract:
The present invention relates to a method for self-testing an angle-of-attack probe comprising the steps of controlling an angular excitation of a rotary element that is rotatable about its equilibrium position according to known excitation characteristics; acquiring angular measurements relating to the rotation of the rotary element, determining a parasitic torque applied to the rotary element on the basis of the angular measurements and of the excitation characteristics; comparing at least one component of the parasitic torque with at least one predetermined threshold and detecting an operating fault in the probe when said component exceeds the predetermined threshold.
Abstract:
The present invention relates to a method for self-testing an angle-of-attack probe comprising the steps of controlling an angular excitation of a rotary element that is rotatable about its equilibrium position according to known excitation characteristics; acquiring angular measurements relating to the rotation of the rotary element, determining a parasitic torque applied to the rotary element on the basis of the angular measurements and of the excitation characteristics; comparing at least one component of the parasitic torque with at least one predetermined threshold and detecting an operating fault in the probe when said component exceeds the predetermined threshold.
Abstract:
A multifunction probe for primary references for an aircraft, an associated measuring system, aircraft and method for obtaining physical quantities are disclosed. In one aspect, the multifunction probe includes a base designed to be fastened on the cockpit of an aircraft, a plurality of static pressure taps arranged through the base and connected to pressure measuring devices and an optical window transparent to laser radiation and positioned in the base for the passage of laser radiation through the base. The multifunction probe further includes at least one laser anemometry optical head positioned to take laser anemometry measurements through the optical window and a static temperature probe mounted on the base.
Abstract:
A probe system, mixed primary reference probe for an aircraft, associated aircraft and measuring method are disclosed. In one aspect, the probe system includes a base designed to be fastened on the cockpit of an aircraft, a plurality of regularly spaced static pressure taps, arranged through the base and designed to be connected to a pressure measurement device. The system includes at least one optical window transparent to laser radiation and inserted into the base.
Abstract:
A method for estimating the transverse component Vtrans of the velocity of the air comprises the following steps: emitting a focused laser beam; acquiring an electrical signal resulting from the transit of a particle across the beam at a point of transit; analysing the signal so as to obtain a spectrogram revealing an elongate mark representative of the transit; estimating the duration of traversal of the laser beam by the particle and the slope of the mark; deducing from the duration and from the slope the distance between the point of traversal of the beam and the focusing point; determining the radius of the beam at the point of transit; deducing the transverse component from the radius and from the duration.