Abstract:
A navigation aid method to determine an improved trajectory between points of departure and arrival as a function of a trajectory cost, comprises: determining a grid of nodes, loading meteorological data at the nodes, determining for each node, an average instantaneous cost from a first instantaneous cost as a function of a ground speed taking into account meteorological data loaded at the node concerned, and from a second instantaneous cost as a function of a ground speed that does not take into account the loaded meteorological data, determining a length of a trajectory passing through the node and arriving at the point of arrival, determining a cost grid assigning, at each of the nodes of the grid, a local cost determined from the average instantaneous cost and the length, determining an improved trajectory from the cost grid, and graphically representing the improved trajectory and/or the cost grid to a crew.
Abstract:
A method for computing a setpoint trajectory of an aircraft comprising at least two subsets comprises the formulation and the solving of an optimization problem for the trajectory, and the formulation of the problem comprises at least the formulation of a constraint related to a transition of legs on at least one first subset of the trajectory, and the formulation of a constraint related to a transition of vertical flight phases on at least one second subset of the trajectory. The invention also relates to a system and a computer program for the computation of a trajectory.
Abstract:
A navigation aid method to determine an improved trajectory between points of departure and arrival as a function of a trajectory cost, comprises: determining a grid of nodes, loading meteorological data at the nodes, determining for each node, an average instantaneous cost from a first instantaneous cost as a function of a ground speed taking into account meteorological data loaded at the node concerned, and from a second instantaneous cost as a function of a ground speed that does not take into account the loaded meteorological data, determining a length of a trajectory passing through the node and arriving at the point of arrival, determining a cost grid assigning, at each of the nodes of the grid, a local cost determined from the average instantaneous cost and the length, determining an improved trajectory from the cost grid, and graphically representing the improved trajectory and/or the cost grid to a crew.
Abstract:
A computer equipment comprises a trackball used to point to objects on a screen of the equipment. A method for driving the computer equipment is also provided. The trackball comprises a moving part and a body inside which the moving part can be displaced, the computer being configured to display at least one object and a pointer on the screen. The trackball comprises means making it possible to exert a tangential force on the moving part, means driven by the computer. The computer is configured to modulate the force according to the shape of the object displayed and the position of the pointer relative to the object.