Abstract:
A method is provided of dynamic allocation of shared resources in a communication network, consisting in defining, in a time-frequency plan, a superframe of a given duration ΔT and a given spectral width Δf, made up of one or more frames, each defining a regular time-frequency grid, of which one square, referred to as a time-frequency unit, constitutes the smallest time and frequency interval allocable to a user of said network within said frame, said method consisting in reserving, on each carrier frequency of a frame, at least one block of a number K, greater than or equal to 1, of time-frequency units which can be dynamically allocated to a user for communication or for synchronization.
Abstract:
A method is provided of dynamic allocation of shared resources in a communication network, consisting in defining, in a time-frequency plan, a superframe of a given duration ΔT and a given spectral width Δf, made up of one or more frames, each defining a regular time-frequency grid, of which one square, referred to as a time-frequency unit, constitutes the smallest time and frequency interval allocable to a user of said network within said frame, said method consisting in reserving, on each carrier frequency of a frame, at least one block of a number K, greater than or equal to 1, of time-frequency units which can be dynamically allocated to a user for communication or for synchronization.
Abstract:
A data transmission system in a communication network comprising a data modulator comprises: a first part at the level of the collection point part comprising: an NCR module taking account of an external absolute time reference to reconstitute a network clock, a transmitter module receiving the value of a time reference to be inserted into the data packet to be transmitted and transmitting to the NCR module an information item on an instant of synchronization for the receiver, a second part at the level of the radiofrequency part of a gateway comprising; a receiver module, a module for reconstructing a clock locally, a module for inserting a time reference into a data packet received by the receiver before transmission of the data via the satellite, the first part and the second part exchange encapsulated data.
Abstract:
A method comprises a preprocessing step consisting, in the gateway station, in pre-segmenting the data as a function of the carrier frequency which is dedicated to them on the downlink DL, in reassembling and in encapsulating the pre-segmented data in successive basic frames DL BB-Frames, that can be transmitted over the downlink, each basic frame DL BB-Frame of the downlink being encapsulated by addition of a specific transport header DL BB-TH on the downlink and a data field, and a step consisting, in the gateway station, in incorporating the different basic frames DL BB-Frames of the downlink in the data field of the different basic frames UL BB-Frames of the uplink.
Abstract:
A ground station with P antennas for individually tracking a satellite out of an origin first moving satellite S1 and a destination second moving satellite S2 comprises, connected in series, a multi-channel reception and processing device and a combination device with configurable diversity, and comprises a device for managing diversity and seamless handover of a reception communication link from the origin first satellite S1 to the destination second satellite S2. The diversity and seamless handover management device is configured to manage and coordinate the execution of a succession of k seamless and unitary antenna handovers Bi, and during each seamless and unitary handover Bi, control the antennas, the multi-channel reception and processing device and the combination device with configurable diversity by determining and sending to them respectively: satellite acquisition pointing commands, and commands for alignment in time and in phase of the P signals received as input of the multi-channel reception and processing device generated as a function of measurements of time and phase deviations of P-1 signals received as input in relation to the signal received as input taken as reference signal, and a setpoint for selection of the output processed signals to be combined as a function of the scheduling of the handover from the first diversity configuration C1 to the second diversity configuration C2 and as a function of measurements of qualities of the signals received as input of the reception and processing device.
Abstract:
A method and device are provided suited to estimating a frequency value for aeronautical communication between a first station and an airborne system moving in relation to the first station, the data being transmitted in the form of a succession of frames, a frame comprising at least one first header field of known data followed by one or more fields of unknown data, and having at least the following steps: Step 1: performance of a supervised correlation on the known data (300) of the header, and estimation of a first frequency range centered on a frequency ; Step 2: production of a blind correlation on at least all of the unknown data of a field of data, by looking for a correlation peak over the frequency range +/−, as determined in step 1, and by retaining of the frequency corresponding to the correlation peak.