Abstract:
Provided are a functional cylinder body, including a plurality of layers having magnetic patterns and non-magnetic patterns formed adjacently, and a manufacturing method therefor. The functional cylinder body comprises at least: a cylinder main body; a first functional pattern part, which includes first patterns and first functional patterns, the first patterns having first recess patterns and first non-recess patterns formed by forming recesses on a first material layer made of any one of a magnetic material and a non-magnetic material, the first functional patterns being made of any one of the magnetic material and the non-magnetic material embedded in the first recess patterns; and a second functional pattern part, which is formed in a position of the cylinder main body shallower than a position of the first recess patterns and has magnetic patterns of the magnetic material and non-magnetic patterns of the non-magnetic material formed adjacently.
Abstract:
Provided is a gripping portion structure of a gravure plate-making robot in which the accurate gripping of an unprocessed plate-making roll and the positioning accuracy during transfer of the unprocessed plate-making roll to each processing device can be improved by causing a gravure plate-making robot to exhibit a high gripping force when gripping the unprocessed plate-making roll. The gripping portion structure of a gravure plate-making robot to be used in a fully automatic gravure plate-making processing system for manufacturing a gravure plate-making roll by gripping and transferring an unprocessed plate-making roll to each processing device includes: a pair of gripping plates to be mounted on an arm distal end of the gravure plate-making robot, the pair of gripping plates being freely spaced widely or narrowly from each other, and being configured to grip both end portions of the unprocessed plate-making roll; and a gripping surface forming member provided on each of the pair of gripping plates, the gripping surface forming member having a gripping surface that is curved so as to be recessed toward a center of the end portion of the unprocessed plate-making roll to be gripped and having a non-slip function.
Abstract:
Provided are a surface drying device for a sheet-like non-permeable base material with enhanced drying efficiency on a surface of a sheet-like non-permeable base material having a liquid adhering to a surface thereof, and a printing apparatus and a printing method using the surface drying device. The surface drying device for a sheet-like non-permeable base material includes: a loading port for loading a sheet-like non-permeable base material with a liquid adhering surface; an air nozzle configured to spray high-temperature air; an unloading port for unloading the sheet-like non-permeable base material; an air shield zone forming portion, which is formed between the loading port and the unloading port, and is configured to form a heat-insulating air shield so as to cover the liquid adhering surface of the sheet-like non-permeable base material; and a retained air exhaust portion configured to exhaust retained air retained on the liquid adhering surface of the sheet-like non-permeable base material to outside of the air shield zone forming portion through use of a Coanda effect, to thereby replace liquid adhering surface air on the liquid adhering surface of the sheet-like non-permeable base material.
Abstract:
Provided are a non-conductive antibacterial sheet, a method for manufacturing thereof, and an antibacterial method, wherein it is enough that the feature height of the non-conductive antibacterial sheet is shallower than the conventional one, and hence many materials may be used for preparation thereof. The non-conductive antibacterial sheet of an acrylic resin comprises a micropatterned concave and convex surface in which there are produced concave and convex micropattern groups by forming multiple protrusion portions each having a nearly rectangular shape in a plane view on the surface thereof, wherein the protrusion portions are regularly formed in an x-direction and a y-direction orthogonal thereto with x-direction spaces and y-direction spaces, the both spaces having predetermined widths; a height from the surface of the sheet to the top of the protrusion portion is 0.4 μm to 1 μm; a bottom width of the protrusion portion is 2 μm to 3 μm, and the width of the x-direction space is equal to the bottom width of the protrusion portion; and the non-conductive antibacterial sheet exhibits an antibacterial effect in such a way that bacteria which are in static contact with the micropatterned surface are not trapped in the x-direction spaces.