Abstract:
Provided are a highly versatile counterfeit-preventive optical element applicable to both the banknote field and the ID field and an information medium including the optical element. A counterfeit-preventive optical element (1) of an embodiment includes a first layer (2), second layer (3), and a third layer (6) that are stacked in this order. A relief structure (R) is provided between the first layer (2) and the second layer (3), the first layer (2) includes a first region (4) and a second region (5), the first region (4) totally reflects incident light incident from the first layer (2) due to at least one of the angle of a face of the relief structure (R) and the refractive index ratio of the first layer (2) and the second layer (3), and the second region (5) transmits or refracts at least some of incident light incident from the first layer (2) due to one of the angle of a face of the relief structure (R) and the refractive index ratio of the first layer (2) and the second layer (3). The transparency of the second region (5) is higher than the transparency of the first region (4) only when the optical element is observed from the first layer (2) at a particular angle.
Abstract:
A laminate in which a first layer is formed with high positional accuracy, and a manufacturing method thereof is provided. In the laminate of this invention, a relief structure forming layer includes a first region having an indented structure extending in a first direction or a direction tilted by an angle within 10 degrees to the left or right from the first direction in a plan view, and a second region including an indented structure extending in a second direction orthogonal to the first direction or a direction tilted by an angle within 65 degrees to the left or right from the second direction in a plan view. The first layer contains a first material which is different from a material of the relief structure forming layer, and has a surface shape corresponding to that of the relief structure forming layer.
Abstract:
The object of the present invention is to provide an optical information medium having a colored glossy effect which is single- or multi-colored in regions where a reflective layer is present, but colorless in regions where the reflective layer is absent. The optical information medium of the present invention includes a bonding part (receiving layer), at least one image part, and an adhesive layer (protective layer) covering the at least one image part, wherein each of the image part includes a micro-protrusion/depression structure including part having a micro-protrusion/depression structure on at least a part of the surface opposite to the bonding part, a reflective layer, and a mask layer, in the order from the bonding part (receiving layer), the micro-protrusion/depression structure including part is colorless or colored in one or more translucent or opaque color, and at least one of the micro-protrusion/depression structure including part of the image part is colored in one or more translucent or opaque color.
Abstract:
There is provided an optical element for counterfeit prevention that has both high counterfeit preventing property and designability by a multi-optical element structure. The optical element has a second layer (3) having a relief structure on a front surface, a first layer (2) disposed on the second layer (3), and a third layer (6) in a thin film interposed between the second layer (3) and the first layer (2) and formed along a front surface of the relief structure. The second layer (3) has a refractive index lower than a refractive index of the first layer (2) and the third layer (6) has a refractive index higher than the refractive index of the first layer (2). The optical element has at least a first region (4) and a second region (5) in a plan view. In the first region (4), an electromagnetic wave that enters from a side of the first layer (2) in a specific angle range is configured to be totally reflected. In the second region (5), a relief structure that causes at least one of diffraction, interference, scattering, refraction, and absorption of an electromagnetic wave is disposed and the electromagnetic wave entering from the first layer (2) side is configured to be reflected by a refractive index difference between the first layer (2) and the third layer (6).
Abstract:
A unisometric reflection display has a light transmissivity and includes reflectors included in a reflector holding layer of a thin film form. The reflector holding layer has a plurality of sections divided in a direction of a plane of the reflector holding layer. In each of at least two of the sections, reflectors inside incline in a fixed direction and a fixed angle. A direction and/or an angle in which reflectors incline differ between the two sections.
Abstract:
There is provided a versatile optical element applicable both to an electrode layer required in a bank bill field and to an optical element required in an ID field. In an optical element (1) according to one embodiment of the present invention, a first layer (2) is arranged on a second layer (3) having a relief structure on a surface thereof, and a first region (4) and a second region (5) are provided. Electromagnetic waves incident at a preset specific angle from a side of the first layer (2) are totally reflected due to at least one of the relief structure in the first region (4) and a ratio of a refractive index of the second layer (3) with respect to a refractive index of the first layer (2), the electromagnetic waves incident at the specific angle from the side of the first layer (2) are not totally reflected but transmitted or refracted due to at least one of the relief structure in the second region (5) and the ratio of the refractive index of the second layer (3) with respect to the refractive index of the first layer (2), and only in case of observation performed from the specific angle on the first layer (2) side, the second region (5) has higher transparency than the first region (4), and a preset image is expressed by a transparency contrast therebetween.
Abstract:
A forgery prevention structure configured by layering at least a relief forming layer, a first reflection layer, a functional thin film layer, and a second reflection layer, in this order, wherein the relief forming layer has, on one side, a relief structure which has an effect of diffracting, scattering, absorbing, and polarizing/separating at least a part of a wave-length range of visible light; the first reflection layer and the functional thin film layer are provided along a whole surface of an uneven area of the relief structure; the second reflection layer is provided in an arbitrary area which covers a part of the uneven area of the relief structure.
Abstract:
There is provided an optical structure having a quantization phase difference structure on one surface of a quantization phase difference structure layer, wherein in the quantization phase difference structure, a plurality of quantization projecting portions in a constant size and a plurality of quantization recessed portions in a constant size are aligned, wherein a multiple diffraction region has the quantization phase difference structure where ribbed projecting portions, in which the quantization projecting portions are aligned in one direction, are arranged adjacent to and alternately with groove-like recessed portions, in which the quantization recessed portions are aligned parallel to the ribbed projecting portions, and wherein the multiple diffraction region is a quantization phase difference structure configured to reproduce a plurality of reproduction points discrete in one direction and arranged regularly.
Abstract:
There is provided an optical structure having a quantization phase difference structure on one surface of a quantization phase difference structure layer, wherein in the quantization phase difference structure, a plurality of quantization projecting portions in a constant size and a plurality of quantization recessed portions in a constant size are aligned, wherein a multiple diffraction region has the quantization phase difference structure where ribbed projecting portions, in which the quantization projecting portions are aligned in one direction, are arranged adjacent to and alternately with groove-like recessed portions, in which the quantization recessed portions are aligned parallel to the ribbed projecting portions, and wherein the multiple diffraction region is a quantization phase difference structure configured to reproduce a plurality of reproduction points discrete in one direction and arranged regularly.
Abstract:
A forgery prevention structure, in one configuration, includes a relief forming layer, a first reflection layer, a functional thin film layer, a second reflection layer and a protection layer in this order. In this configuration, the relief forming layer has a relief structure comprising a first relief and a second relief; each of the reliefs has an uneven surface, a surface area of the uneven surface of the first relief being smaller than a surface area of the uneven surface of the second relief; the first reflection layer and the functional thin film layer each are provided along a whole of the uneven surfaces of the reliefs and each has uneven surfaces corresponding respectively to the uneven surfaces of the reliefs; and the second reflection layer and the protection layer each has an uneven surface corresponding to the uneven surface of the first relief.