摘要:
The disclosure includes a system and method for wireless data sharing between a mobile client device and a three-dimensional heads-up display unit. A system may include a three-dimensional heads-up display unit (“3D HUD”) installed in a vehicle. The system may include a memory storing instructions that, when executed, cause the system to: establish a peer-to-peer video stream between a mobile client device and the vehicle; generate live video data for providing a video stream for causing a screen of the mobile client device to display visual content of the 3D HUD that includes substantially live images depicting what the driver of the vehicle sees when looking at the 3D HUD; and stream the live video data to the mobile client device to cause the screen of the mobile client device to display the video stream that depicts what the driver of the vehicle sees when looking at the 3D HUD.
摘要:
This disclosure describes, according to some implementations, a system and method for adapting object handover from robot to human using perceptual affordances. In an example method, upon receiving sensor data describing surroundings and/or operational state of a robot unit from a sensor, the method calculates a probability of a perceptual classification based on the sensor data. The perceptual classification may be one or more of an environment classification, an object classification, a human action classification, or an electro-mechanical state classification. The method further calculates an affordance of the probability of the perceptual classifier using a preference model, determines a handover action based on the affordance, executes the handover action, and updates the preference model based on feedback.
摘要:
Technology for localized guidance of a body part of a user to specific objects within a physical environment using a vibration interface is described. An example system may include a vibration interface wearable on an extremity by a user. The vibration interface includes a plurality of motors. The system includes sensor(s) coupled to the vibrotactile system and a sensing system coupled to the sensor(s) and the vibration interface. The sensing system is configured to analyze a physical environment in which the user is located for a tangible object using the sensor(s), to generate a trajectory for navigating the extremity of the user to the tangible object based on a relative position of the extremity of the user bearing the vibration interface to a position of the tangible object within the physical environment, and to guide the extremity of the user along the trajectory by vibrating the vibration interface.
摘要:
The disclosure includes a system and method for determining a robot path based on user motion by determining a current position of a robot with a processor-based computing device programmed to perform the determining, receiving sensor readings on positions, directions, and velocities of a visually-impaired user and other users, generating a model of the motions of the visually-impaired user and the other users, the model including a user path for the visually-impaired user and a robot path for the robot, generating a collision prediction map to predict collisions between at least one of the robot, the visually-impaired user, and the other users, determining whether there is a risk of collision for either the visually-impaired user or the robot, and responsive to the risk of collision, updating at least one of the user path and the robot path.
摘要:
The disclosure includes methods for determining a current location for a user in an environment; detecting obstacles within the environment; estimating one or more physical capabilities of the user based on an EHR associated with the user; generating, with a processor-based device that is programmed to perform the generating, instructions for a robot to perform a task based on the obstacles within the environment and one or more physical capabilities of the user; and instructing the robot to perform the task.
摘要:
A system for detecting a person and estimating pose information comprises a processor and a memory storing instructions causing the system to: retrieve depth data from a sensor, the depth data describing distance information associated with one or more objects detected by the sensor; cluster the depth data to determine two or more candidate leg clusters, each candidate leg cluster including a portion of the depth data that may represent a human leg detected by the sensor; identify a candidate leg cluster pair including two candidate leg clusters within a certain distance between each other; determine whether there is a connectivity between the two candidate leg clusters included in the candidate leg cluster pair; and responsive to determining that there is a connectivity between the two candidate leg clusters, determine that the candidate leg cluster pair is qualified to be a leg cluster pair representing a person.
摘要:
The disclosure includes a system and method for wireless data sharing between a mobile client device and a three-dimensional heads-up display unit. A system may include a three-dimensional heads-up display unit (“3D HUD”) installed in a vehicle. The system may include a memory storing instructions that, when executed, cause the system to: establish a peer-to-peer video stream between a mobile client device and the vehicle; generate live video data for providing a video stream for causing a screen of the mobile client device to display visual content of the 3D HUD that includes substantially live images depicting what the driver of the vehicle sees when looking at the 3D HUD; and stream the live video data to the mobile client device to cause the screen of the mobile client device to display the video stream that depicts what the driver of the vehicle sees when looking at the 3D HUD.
摘要:
The disclosure includes a system and method for wireless data sharing between a mobile client device and a three-dimensional heads-up display unit. A system may include a three-dimensional heads-up display unit (“3D HUD”) installed in a vehicle. The system may include a memory storing instructions that, when executed, cause the system to: establish a peer-to-peer video stream between a mobile client device and the vehicle; generate live video data for providing a video stream for causing a screen of the mobile client device to display visual content of the 3D HUD that includes substantially live images depicting what the driver of the vehicle sees when looking at the 3D HUD; and stream the live video data to the mobile client device to cause the screen of the mobile client device to display the video stream that depicts what the driver of the vehicle sees when looking at the 3D HUD.
摘要:
The disclosure includes implementations for providing ground adjustment for an in-vehicle augmented reality system. A system may include a three-dimensional heads-up display unit (“3D HUD”) installed in a vehicle. The system may include a memory storing instructions that, when executed, cause the system to: determine a plurality of elevation values for a plurality of points on a road surface, where each elevation value is associated with a point from the plurality of points and describes the elevation of that point; identify a graphic for display on the 3D HUD, where the graphic is associated with at least one point from the plurality of points; determine which location of the 3D HUD is associated with the at least one point associated with the graphic; and display the graphic at the location of the 3D HUD so that the graphic superposes the point when viewed by a driver.
摘要:
The disclosure includes a method and a robot for projecting the one or more graphics on the surface of a user environment. The method may include determining robot velocity data describing one or more of an angular velocity and a linear velocity of the robot. The method may include determining graphical data describing one or more graphics for projection on the surface of a user environment based on the angular velocity and the linear velocity of the robot. The one or more graphics may include one or more arrows describing a past behavior of the robot and a pending behavior of the robot. The method may include projecting the one or more graphics on the surface of the user environment so that a user present in the user environment with the robot may have access to information describing the past and pending behavior of the robot.