摘要:
The ferritic stainless steel sheet involves a problem that the ridging is likely to generate at the forming step, such as the deep drawing step. The ridging is believed to be caused by a band structure in the hot rolled band, which structure exerting an influence on the formability of a cold rolled sheet. The ridging is prevented in the present invention by means of the combination of the three technical measures: incorporating aluminum into a ferritic stainless steel; heating a slab to a low temperature of 1200.degree. C. or less; and, carrying out a drastic hot rolling of at least one pass with the draft of 20%/pass or more. As a result of these technical measures, the structure of a hot rolled band is made and uniform and thus both the formability and anti-ridging property are enhanced.
摘要:
In a process for the production of cold rolled ferritic stainless steel sheets or strips, a hot rolled strips has been annealed by a long time batchwise annealing and cold rolling and recrystallization annealing have been repeated usually twice. In the present invention, a hot rolled steel strip of an Al-containing ferritic stainless steel is heated by continuous annealing to a temperature of from 850.degree. to 1100.degree. C., AlN (aluminum nitride) is precipitated in the dispersed state and then cooling the strip to a temperature of 700.degree. to 900.degree. C., performing subsequent cooling to a level not higher than 200.degree. C. at such a cooling rate that a chromium depletion layer, which causes a gold dust defect, is not formed around the chromium carbonitride. Single cold rolling and recrystallization annealing are carried out in combination until the thickness is reduced to the gauge thickness.
摘要:
A ferritic stainless steel having excellent formability, for example, in a deep drawing procedure, contains 0.04 to 0.1 weight % of C, 1.0 weight % or less of Si, 0.75 weight % or less of Mn, 10 to 30 weight % of Cr, 0.5 weight % or less of Ni, 0.025 weight % or les of N, 2 to 30 ppm of boron, and optionally, 0.005 to 0.4 weight % of an additional alloy component consisting of Al and, further optionally, a further additional alloy component consisting of at least one member selected from 0.005 to 0.6 weight % of Ti, 0.005 to 0.4 weight % of Nb, V, and Zr, 0.02 to 0.50 weight % of Cu, and 0.05 weight % or less of Ca and Ce, the sum of the contents of C and N being 0.0502 weight % or more.