Abstract:
A cold-rolled flat steel product has a tensile strength of 750-940 MPa, a high strength, an improved weldability and optimized shaping properties, and can be produced at low cost. The cold-rolled flat steel product consists of a steel composed, in percent by mass, of C: 0.040-0.100%; Mn: 2.10-2.50%; Si: 0.10-0.40%; Cr: 0.30-0.90%; Ti: 0.020-0.080%, B: 0.0005-0.0020%; N: 0.003-0.010%; Al: up to 0.10%; Ca: up to 0.005%; P: up to 0.025%; S: up to 0.010%; optionally one or more of the following elements: Mo: up to 0.20%; Nb: up to 0.050%; Cu: up to 0.10%; V: up to 0.020%; Ni: up to 0.10%, the remainder being iron and unavoidable impurities, and total content of impurities is limited to at most 0.5% by mass and contents of phosphorus (“P”) and sulfur (“S”) belong to the impurities.
Abstract:
The present invention provides an ultra high strength cold rolled steel sheet having excellent spot weldability and formability. The ultra high strength cold rolled steel sheet, according to one embodiment of the present invention, comprises, in weight percent,: 0.05% to 0.09% of carbon (C); 0.5% to 1.0% of silicon (Si); 2.0% to 2.8% of manganese (Mn); 0.2% to 0.5% of aluminum (Al); 0.8% to 1.2% of chromium (Cr); 0.05% to 0.10% of molybdenum (Mo); 0.03% to 0.06% of titanium (Ti); 0.001% to 0.003% of boron (B); 0.02% to 0.05% of antimony (Sb); 0.001% to 0.015% of phosphorus (P); more than 0% to 0.003% of sulfur (5); 0.004% to 0.006% of nitrogen (N); and a balance of iron (Fe) and other inevitable impurities, and the ultra high strength cold rolled steel sheet comprises a microstructure comprising ferrite and low hardness martensite.
Abstract:
Disclosed are methods and apparatus for impressing a temperature profile onto a sheet steel component, wherein in one or more first areas, a temperature below the AC3 temperature can be impressed on the sheet steel component, and in one or more second areas, a temperature above the AC3 temperature can be impressed on the sheet steel component, and is characterized in that the sheet steel component is firstly preheated in a production furnace, and is then transferred into the thermal re-treatment station, wherein a radiation heat source is moved over the component in the thermal re-treatment station, by means of which the one or more first areas of the sheet steel component can be kept at a temperature below the AC3 temperature or cooled down further, and the one or more second areas can be heated to or kept at a temperature above the AC3 temperature.
Abstract:
A method for processing a press hardenable steel includes first heating a slab of the press hardenable steel. The slab is heated to a re-heat furnace temperature of approximately 2300° F. The slab is subjected to rolling into a steel sheet having a predetermined thickness. The temperature of the slab during rolling corresponds to a rolling temperature that is greater than or equal to 1600° F. The steel sheet is coiled. The temperature of the steel sheet during coiling corresponds to a coiling temperature of approximately 1050° F.
Abstract:
A method for making a vehicle body component includes forming a generally flat plate of unhardened, hot-formable sheet steel with a marginal shape which corresponds essentially to the developed configuration of the finished vehicle body component. The formed plate is hot-formed and hardened in a single press tool to define a sheet profile which corresponds to the configuration of the finished vehicle body component, and a surface coating is applied to the sheet profile.
Abstract:
A high-strength galvanized steel sheet contains C: 0.010% or more and 0.06% or less, Si: more than 0.5% and 1.5% or less, Mn: 1.0% or more and 3.0% or less, P: 0.005% or more and 0.1% or less, S: 0.01% or less, sol.Al: 0.005% or more and 0.5% or less, N: 0.01% or less, Nb: 0.010% or more and 0.090% or less, and Ti: 0.015% or more and 0.15% or less, on a mass percent basis. The Nb and C contents of the steel satisfy the relation of (Nb/93)/(C/12)
Abstract:
A hot-pressed steel sheet member includes a specific chemical composition and further includes a steel structure in which an area ratio of ferrite in a surface layer portion ranging from a surface to 15 μm in depth is greater than 1.20 times an area ratio of ferrite in an inner layer portion being a portion excluding the surface layer portion, and the inner layer portion contains a steel structure represented, in area %, ferrite: 10% to 70%, martensite: 30% to 90%, and a total area ratio of ferrite and martensite: 90% to 100%. A tensile strength of the hot-pressed steel sheet member is 980 MPa or more.
Abstract:
A hot rolled steel sheet with a yield stress greater than 690 MPa and less than or equal to 840 MPa, with strength between 780 MPa and 950 MPa, elongation at failure greater than 10% and a hole expansion ratio (Ac) greater than or equal to 50% is described. Methods for the fabrication of the sheet are also described.
Abstract:
The invention relates to a method for producing a high-strength ferritic austenitic duplex stainless steel with the TRIP (Transformation induced plasticity) effect with deformation. After the heat treatment on the temperature range of 950 1150° C. in order to have high tensile strength level of at least 1000 MPa with retained formability the ferritic austenitic duplex stainless steel is deformed with a reduction degree of at least 10%, preferably at least 20% so that with a reduction degree of 20% the elongation (A50) is at least 15%.
Abstract:
A formable galvanized steel sheet includes, in terms of % by mass, 0.05 to 0.3% of C, 0.01 to 2.5% of Si, 0.5 to 3.5% of Mn, 0.003 to 0.100% of P, 0.02% or less of S, 0.010 to 1.5% of Al, and 0.01 to 0.2% in total of at least one element selected from Ti, Nb and V, the remainder being Fe and unavoidable impurities, having a microstructure composed of, in terms of area fraction, 20 to 87% of ferrite, 3 to 10% in total of martensite and residual austenite, and 10 to 60% of tempered martensite, and a second phase composed of the martensite, residual austenite, and tempered martensite having an average crystal grain diameter of 3 μm or less, and having a ratio of absorption energy AE to tensile strength TS (AE/TS) not less than 0.063.