Abstract:
A plasma display panel including: a first substrate; a second substrate separated from the first substrate; and two or more electrode sheets facing each other and between the first and second substrates, each of the two or more electrode sheets including opening patterns to form discharge spaces, wherein each of the two or more electrode sheets includes: a plurality of discharge electrodes extending in a direction and surrounding at least a part of the discharge spaces, and having corners with round curved portions contacting the discharge spaces or adjacent to the discharge spaces; and an insulating member integrally formed between the discharge electrodes for supporting the discharge electrodes and for insulating the discharge electrodes from each other, and including an oxide of a metal used to form the discharge electrodes.
Abstract:
A plasma display panel capable of improving stability of discharge. The plasma display panel includes a first substrate, a second substrate facing the first substrate, discharge cells defined in a space between the first substrate and the second substrate, first electrodes formed between the first substrate and the second substrate and extending along a first direction, and second electrodes formed apart from the first electrodes on the second substrate and extending along a second direction perpendicular to the first direction. The second electrodes protrude from the second substrate, and third electrodes are formed apart from the first electrodes on the second substrate and extend along the second direction, wherein the third electrodes protrude from the second substrate and face the second electrodes. A dielectric layer is formed on the outer surface of the second electrodes and the third electrodes, wherein the dielectric layer includes a first dielectric member formed on the surfaces of the second electrodes and the third electrodes facing each other, and a second dielectric member formed on the first dielectric member and having smaller permittivity than that of the first dielectric member.
Abstract:
A plasma display panel having an opposed discharge structure that can improve discharge efficiency is disclosed. The plasma display panel includes a first substrate and a second substrate arranged to face each other with a predetermined space therebetween, and having a plurality of discharge cells defined in the space between the first and second substrates; phosphor layers formed inside the respective discharge cells; address electrodes formed to extend along a first direction on the second substrate; first and second electrodes formed to extend along a second direction intersecting the first direction, between the first and second substrates and projecting toward the first substrate in a direction away from the second substrate, the first and second electrodes facing each other with a space therebetween; and third and fourth electrodes formed along the second direction between the first substrate and the second substrate, and separated from the respective first and second electrodes in a direction substantially perpendicular to the second substrate.
Abstract:
A plasma display panel including: a front panel including a front substrate, a sustain electrode on a surface of the front substrate extending in one direction and including an X electrode and a Y electrode, and a first dielectric layer including an anodized material of the sustain electrode on a surface of the sustain electrode not contacting the front substrate; a rear panel facing the front panel, and including a rear substrate, an address electrode on one surface of the rear substrate facing the front substrate, and a second dielectric layer covering the address electrode; and a barrier rib partitioning a plurality of discharge cells between the front panel and the rear panel in a pattern.
Abstract:
A plasma display panel includes a front substrate and a rear substrate facing each other, two or more electrode sheets having apertures or openings arranged in a uniform pattern for forming discharge spaces between the front substrate and the rear substrate, and including discharge electrodes surrounding at least a part of each of the discharge spaces and extending in one direction. Phosphor layers are located on the front substrate or the rear substrate to correspond to the discharge spaces. and a discharge gas filled in the discharge spaces, wherein projection portions are formed on side surfaces of the discharge electrodes and project into the discharge spaces.
Abstract:
A plasma display panel that is capable of reducing power consumption and improving exhaust efficiency. The plasma display panel includes a first substrate, a second substrate facing the first substrate, a plurality of discharge cells partitioned between the first substrate and the second substrate, a plurality of phosphor layers arranged within the plurality of discharge cells, a plurality of address electrodes extending in a first direction on the second substrate and a plurality of first electrodes and a plurality of second electrodes extending in a second direction that crosses the first direction, arranged between the first substrate and the second substrate, arranged apart from the plurality of address electrodes, and protruding in a third direction away from the second substrate, wherein the plurality of first electrodes and the plurality of second electrodes face each other with a space therebetween, wherein each of the plurality of first electrodes and each of the plurality of second electrodes respectively include a plurality of expanded portions corresponding to respective ones of the plurality of discharge cells and extending in the third direction, and a plurality of connecting portions connecting ones of the plurality of expanded portions.
Abstract:
A plasma display panel that is capable of reducing power consumption and improving exhaust efficiency. The plasma display panel includes a first substrate, a second substrate facing the first substrate, a plurality of discharge cells partitioned between the first substrate and the second substrate, a plurality of phosphor layers arranged within the plurality of discharge cells, a plurality of address electrodes extending in a first direction on the second substrate and a plurality of first electrodes and a plurality of second electrodes extending in a second direction that crosses the first direction, arranged between the first substrate and the second substrate, arranged apart from the plurality of address electrodes, and protruding in a third direction away from the second substrate, wherein the plurality of first electrodes and the plurality of second electrodes face each other with a space therebetween, wherein each of the plurality of first electrodes and each of the plurality of second electrodes respectively include a plurality of expanded portions corresponding to respective ones of the plurality of discharge cells and extending in the third direction, and a plurality of connecting portions connecting ones of the plurality of expanded portions.
Abstract:
A plasma display panel is provided. The plasma display panel includes a first substrate, a second substrate facing the first substrate, a plurality of discharge cells which are formed by partitioning a space between the first and second substrates, a plurality of address electrodes which are formed on the first substrate to extend in a first direction, a plurality of first and second electrodes which are formed on the first substrate to extend in a second direction perpendicular to the first direction. The first and second electrodes being electrically separated from the address electrodes and facing each other with the discharge cells interposed therebetween.
Abstract:
A Plasma Display Panel (PDP) that has a structure of a discharge cell realizing high definition and high efficiency and its method of manufacture includes: forming first electrodes on a substrate; forming a first dielectric layer on the substrate to cover the first electrodes; forming a second dielectric layer to cover the first dielectric layer; coating a resist on the second dielectric layer; patterning the resist; etching the second dielectric layer with the patterned resist as a protective layer to form recessed areas for electrode formation and recessed areas for discharge space formation; filling the recessed areas for electrode formation with an electrode paste to form second electrodes and third electrodes; and forming a third dielectric layer on a portion of the second dielectric layer to cover the recessed areas for electrode formation filled with the electrode paste.
Abstract:
A display panel including a first substrate; a second substrate separated from the first substrate; a barrier rib structure disposed between the first and second substrates defining a plurality of discharge cells; a plurality of first electrodes extending in a first direction, the first electrodes in the barrier rib structure; a plurality of second electrodes separated from the first electrodes in a second direction from the first substrate towards the second substrate, the second electrodes in the barrier rib structure; a plurality of third electrodes extending in a third direction crossing the first direction, the third electrodes on a surface of the first substrate facing the discharge cells; and a plurality of phosphor layers on surfaces of the third electrodes facing the discharge cells.