摘要:
Discharge for detecting the position coordinates of an electronic pen is caused stably, and the position coordinates are detected accurately. For this purpose, in a driving method of an image display device, an image display subfield group constituted of image display subfields, a y-coordinate detection subfield, and an x-coordinate detection subfield are set in one field. An initializing period, in which an up-ramp voltage and a down-ramp voltage are applied to the scan electrodes, is set in the x-coordinate detection subfield, and the x-coordinate detection subfield is disposed immediately after the y-coordinate detection subfield.
摘要:
Discharge for detecting the position coordinates of an electronic pen is caused stably, and the position coordinates are detected accurately. For this purpose, in a driving method of an image display device, an image display subfield, a y-coordinate detection subfield, and an x-coordinate detection subfield are included in one field. In the x-coordinate detection subfield, an x-coordinate detection waiting period is set in which a voltage higher than an x-coordinate detection voltage is applied to the scan electrodes and a voltage lower than the voltage of x-coordinate detection pulses is applied to the data electrodes. After the x-coordinate detection waiting period, the x-coordinate detection voltage is applied to the scan electrodes, and the x-coordinate detection pulses are sequentially applied to the data electrodes.
摘要:
Discharge for detecting the position coordinates of an electronic pen is caused stably, and the position coordinates are detected accurately. For this purpose, in a driving method of an image display device, an image display subfield group constituted of image display subfields, a timing detection subfield, a y-coordinate detection subfield, and an x-coordinate detection subfield are set in one field. In the timing detection subfield, a plurality of timing detection pulses for causing timing detection discharge in discharge cells is applied to scan electrodes and sustain electrodes alternately.
摘要:
A first ramp waveform (RW1) rising from a first potential (Vscn) to a second potential (Vscn+Vset) is applied to a plurality of scan electrodes (SCi) in a first period (t5 to t6), and a driving waveform dropping from a third potential (Ve1) to a fourth potential (0V) is applied to a plurality of sustain electrodes (SUi) before the first period (t5 to t6), and the plurality of sustain electrodes are held at the fourth potential (0V) in the first period (t5 to t6). At this time, a second ramp waveform (RW10) rising from a fifth potential (0 V) to a sixth potential (Vd) according to change of a potential of the first ramp waveform (RW1) is applied to a plurality of data electrodes (Dj) in a second period (t5 to t5a) that starts at a starting time point (t5) of the first period (t5 to t6) and is shorter than the first period (t5 to t6), thereby preventing generation of strong discharges between the plurality of data electrodes (Dj) and the plurality of scan electrodes (SCi).
摘要:
A first ramp waveform (RW1) rising from a first potential (Vscn) to a second potential (Vscn+Vset) is applied to a plurality of scan electrodes (SCi) in a first period (t5 to t6), and a driving waveform dropping from a third potential (Ve1) to a fourth potential (0V) is applied to a plurality of sustain electrodes (SUi) before the first period (t5 to t6), and the plurality of sustain electrodes are held at the fourth potential (0V) in the first period (t5 to t6). At this time, a second ramp waveform (RW10) rising from a fifth potential (0 V) to a sixth potential (Vd) according to change of a potential of the first ramp waveform (RW1) is applied to a plurality of data electrodes (Dj) in a second period (t5 to t5a) that starts at a starting time point (t5) of the first period (t5 to t6) and is shorter than the first period (t5 to t6), thereby preventing generation of strong discharges between the plurality of data electrodes (Dj) and the plurality of scan electrodes (SCi).
摘要:
In a plasma display apparatus, the address discharge is stabilized, the contrast is sharpened, and the image display quality is improved. A first up-ramp waveform voltage is applied to the scan electrode, and then a voltage causing no discharge to the scan electrode is applied to the scan electrode, in the sustain period of a weak-discharge sustain operation subfield in a discharge cell that is to be subjected to a forced initializing operation in the initializing period of the subfield immediately after the weak-discharge sustain operation subfield. A second up-ramp waveform voltage is applied to the scan electrode after generation of the first up-ramp waveform voltage, in the sustain period of the weak-discharge sustain-operation subfield in a discharge cell that is to be subjected to a selective initializing operation in the initializing period of the subfield immediately after the weak-discharge sustain-operation subfield.
摘要:
Stable address discharge is caused in a plasma display panel. For this purpose, the image display region of the panel is divided into a plurality of partial display regions, and scan electrodes in each partial display region are classified into two scan electrode groups based on the arranging sequence of the scan electrodes on the panel. The two scan electrode groups are a first scan electrode group including odd-numbered scan electrodes, and a second scan electrode group including even-numbered scan electrodes, In each partial display region in the address period, an overshoot address operation is performed. To the scan electrodes to which scan pulses are to be applied from the first time to a predetermined-number-th time in each scan electrode group, scan pulses are applied where the pulse cycle is set longer than that of the scan pulses to be applied to the other scan electrodes.
摘要:
An image display region is divided into a plurality of partial display regions, the scan electrodes included in each partial display region are classified into two scan electrode groups: a scan electrode group formed of the odd-numbered scan electrodes; and a scan electrode group formed of the even-numbered scan electrodes. Scan pulses are sequentially applied to one scan electrode group, and then scan pulses are sequentially applied to the other scan electrode group. The pulse width of the scan pulses applied to the first through predetermined-number-th scan electrodes belonging to the one scan electrode group is set to be longer than the pulse width of the scan pulses applied to the remaining scan electrodes belonging to the one scan electrode group. The pulse width of the scan pulses applied to the first through predetermined-number-th scan electrodes belonging to the other scan electrode group is set to be longer than the pulse width of the scan pulses applied to the remaining scan electrodes belonging to the other scan electrode group.
摘要:
Disclosed here is a method for driving a plasma display panel and a plasma display device capable of providing image display with a high contrast ratio and excellent quality by stabilizing an address discharge. According to the method, which is the method for driving a plasma display panel in which discharge cells are formed at intersections of scan electrodes, sustain electrodes and data electrodes, the field—that contains at least one sub-field having the all-cell initializing operation—and the field—that is formed of sub-fields having the selective-cell initializing operation only—are set at a ratio of 1:N (where, N takes an integer of 1 or greater). At the same time, at least in one sub-field of the field having the selective-cell initializing operation only, the scan-pulse width employed for the selective-cell initializing field is determined longer than the scan-pulse width employed for the field containing the all-cell initializing operation.
摘要:
Disclosed here is a method for driving a plasma display panel and a plasma display device capable of providing image display with a high contrast ratio and excellent quality by stabilizing an address discharge. According to the method, which is the method for driving a plasma display panel in which discharge cells are formed at intersections of scan electrodes, sustain electrodes and data electrodes, the field—that contains at least one sub-field having the all-cell initializing operation—and the field—that is formed of sub-fields having the selective-cell initializing operation only—are set at a ratio of 1:N (where, N takes an integer of 1 or greater). At the same time, at least in one sub-field of the field having the selective-cell initializing operation only, the scan-pulse width employed for the selective-cell initializing field is determined longer than the scan-pulse width employed for the field containing the all-cell initializing operation.