摘要:
The pyroelectric infrared detection element has a pyroelectric element including opposite first and second electrodes and an infrared absorption part. The first and second electrodes are formed on first and second thickness-direction surfaces of a pyroelectric substrate respectively. The detection element includes an output terminal unit including first and second output terminals on the substrate, and first and second wiring parts connecting the first and second output terminals to the first and second electrodes respectively. The first wiring part includes a connecting line being a conductive layer on the first surface to connect the first output terminal to the first electrode, and a canceling line for canceling charges generated at the connecting line in response to a change in temperature of the substrate. The canceling line is a conductive layer on the second surface to be insulated from the second electrode and to be connected to the connecting line.
摘要:
The pyroelectric infrared detection element has a pyroelectric element including opposite first and second electrodes and an infrared absorption part. The first and second electrodes are formed on first and second thickness-direction surfaces of a pyroelectric substrate respectively. The detection element includes an output terminal unit including first and second output terminals on the substrate, and first and second wiring parts connecting the first and second output terminals to the first and second electrodes respectively. The first wiring part includes a connecting line being a conductive layer on the first surface to connect the first output terminal to the first electrode, and a canceling line for canceling charges generated at the connecting line in response to a change in temperature of the substrate. The canceling line is a conductive layer on the second surface to be insulated from the second electrode and to be connected to the connecting line.
摘要:
The infrared optical filter of the present invention comprises a substrate formed of an infrared transmitting material and a plurality of filter parts arranged side by side on one surface side of the substrate. Each filter part includes: a first λ/4 multilayer film in which two kinds of thin films having mutually different refractive indices but an identical optical film thickness are alternately stacked; a second λ/4 multilayer film in which the two kinds of thin films are alternately stacked, said second λ/4 multilayer film being formed on the opposite side of the first λ/4 multilayer film from the substrate side, and; and a wavelength selection layer interposed between the first λ/4 multilayer film and the second λ/4 multilayer film, said wavelength selection layer having an optical film thickness different from the optical film thickness of each the thin film according to a desired selection wavelength. A low refractive index material of the first λ/4 multilayer film and the second λ/4 multilayer film is an oxide, and a high refractive index material thereof is a semiconductor material of Ge. A material of the wavelength selection layer is identical to a material of the second thin film from the top of the first λ/4 multilayer film.