摘要:
A corrected state space model obtained by correcting a state space model to represent a controllable system by adding an error matrix Δ to a state space model representing an uncontrollable system is designed. A control object is controlled based on a control input of the system represented by this corrected state space model. The control input is calculated by a state feedback controller. By correcting the state space model representing the uncontrollable system by the error matrix Δ, the system can be made controllable. Since the error matrix Δ is added to a state matrix, an influence of an error on an output of the system can be reduced.
摘要:
The magnitude of a linear damping coefficient Cs is set so as to decrease the greater a maximum amplitude value α of an intermediate frequency sprung acceleration is. In the case where a damping force control apparatus carries out control for dampening vibrations of a sprung member using a nonlinear H-infinity control theory, the linear damping coefficient Cs is set to a high value when the maximum amplitude value α of the intermediate frequency sprung acceleration inputted to a suspension apparatus is low. Accordingly, a requested damping force Freq also increases, which makes it possible to quickly dampen vibrations in the sprung member. Meanwhile, in the case where the maximum amplitude value α of the intermediate frequency sprung acceleration is high, the linear damping coefficient Cs is set to a low value. Accordingly, the requested damping force Freq also decreases, which makes it possible to suppress degradation in the riding quality when intermediate frequency vibrations are inputted, and particularly makes it possible to suppress riding quality degradation when the vibration speed is high.
摘要:
The magnitude of a linear damping coefficient Cs is set so as to decrease the greater a maximum amplitude value α of an intermediate frequency sprung acceleration is. In the case where a damping force control apparatus carries out control for dampening vibrations of a sprung member using a nonlinear H-infinity control theory, the linear damping coefficient Cs is set to a high value when the maximum amplitude value α of the intermediate frequency sprung acceleration inputted to a suspension apparatus is low. Accordingly, a requested damping force Freq also increases, which makes it possible to quickly dampen vibrations in the sprung member. Meanwhile, in the case where the maximum amplitude value α of the intermediate frequency sprung acceleration is high, the linear damping coefficient Cs is set to a low value. Accordingly, the requested damping force Freq also decreases, which makes it possible to suppress degradation in the riding quality when intermediate frequency vibrations are inputted, and particularly makes it possible to suppress riding quality degradation when the vibration speed is high.
摘要:
Disclosed is a damping force control device for a vehicle that controls the damping coefficient of a damping force generation device on the basis of a final target control amount that is based on the target control amount for attitude control, which suppresses changes in the vehicle body attitude in at least the rolling direction, and the target control amount for riding comfort control, which increases riding comfort with regards to vehicle body vibrations in at least the rolling direction. The target control amount for riding comfort control is a control amount calculated as the total of a fixed basic control amount and a variable control amount. The target control amount and the variable control amount for attitude control are calculated, a post-correction basic control amount, which is nearer to the target control amount for attitude control than the basic control amount, is calculated, and the total of the post-correction basic control amount and the variable control amount is set as the final target control amount, thereby excellently achieving both the suppression of attitude changes and an increase in riding comfort.
摘要:
Disclosed is a damping force control device for a vehicle that controls the damping coefficient of a damping force generation device on the basis of a final target control amount that is based on the target control amount for attitude control, which suppresses changes in the vehicle body attitude in at least the rolling direction, and the target control amount for riding comfort control, which increases riding comfort with regards to vehicle body vibrations in at least the rolling direction. The target control amount for riding comfort control is a control amount calculated as the total of a fixed basic control amount and a variable control amount. The target control amount and the variable control amount for attitude control are calculated, a post-correction basic control amount, which is nearer to the target control amount for attitude control than the basic control amount, is calculated, and the total of the post-correction basic control amount and the variable control amount is set as the final target control amount, thereby excellently achieving both the suppression of attitude changes and an increase in riding comfort.
摘要:
A vehicle damper including an electromagnetic damper configured to generate a damping force with respect to a motion of a sprung portion and an unsprung portion toward each other and a motion thereof away from each other and includes: an electromagnetic motor; a motion converting mechanism; and an external circuit which is disposed outside the electromagnetic motor and including a first connection passage and a second connection passage and which includes a battery-device connection circuit for connecting the motor and a battery device and a battery-device-connection-circuit-current adjuster configured to adjust an electric current that flows in the battery-device connection circuit, wherein the damper system further includes an external-circuit controller configured to control an electric current that flows in the electromagnetic motor by controlling the external circuit and configured to control a flow of an electric current between the battery device and the electromagnetic motor by controlling the battery-device-connection-circuit-current adjuster.
摘要:
A suspension ECU 13 computes an actual roll angle φ and an actual pitch angle θ of a vehicle, and computes a difference Δθ between a target pitch angle θa and the actual pitch angle θ. The ECU then computes a total demanded damping force F which must be cooperatively generated by shock absorbers 11a, 11b, 11c, and 11d so as to decrease the computed Δθ to zero, and distributes the total demanded damping force F in proportion to the magnitude of a lateral acceleration Gl such that a demanded damping force Fi on the turn-locus inner side becomes greater than a demanded damping force Fo on the turn-locus outer side. Further, the ECU 13 determines whether or not the vehicle body is vibrating in the vertical direction as a result of input of a road surface disturbance, calculates a vibration-suppressing damping force Fd needed for damping the vibration, and determines the demanded damping forces Fi and Fo by use of the vibration-suppressing damping force Fd. Thus, unnecessary vibration in a turning state is quickly converged.
摘要:
A suspension apparatus for use in a vehicle including a body, a body-side member, a wheel, and a wheel-side member, the apparatus including a hydraulic suspension device which is adapted to be provided between the body-side member and the wheel-side member; a first accumulator which is connected to the hydraulic suspension device via a liquid passage and which allows a hydraulic liquid to flow from the liquid passage into the first accumulator when a pressure of the hydraulic liquid in the liquid passage exceeds a first pre-set liquid pressure, the liquid passage including a first portion which is located between an intermediate point thereof and the hydraulic suspension device, and a second portion which is located between the intermediate point thereof and the first accumulator; and a second accumulator which is connected, via a connection passage shorter than the second portion of the liquid passage, to the intermediate point of the liquid passage and which allows the hydraulic liquid to flow from the liquid passage into the second accumulator when the pressure of the hydraulic liquid in the liquid passage exceeds a second pre-set liquid pressure higher than the first pre-set liquid pressure.
摘要:
A suspension ECU 13 calculates a target characteristic changing coefficient a_new for changing a target characteristic, which is represented by a quadratic function, by use of the maximum actual roll angle Φ_max generated in a vehicle body during the current turning state and a turning pitch angle Θ_fy_max which is a fraction of an actual pitch angle Θ generated as a result of turning, and changes the target characteristic by use of the coefficient a_new. Subsequently, the suspension ECU 13 calculates the difference ΔΘ between the actual pitch angle Θ and a target pitch angle Θh corresponding to the actual roll angle Φ on the basis of the changed target characteristic, and calculates a total demanded damping force F to be cooperatively generated by the shock absorbers so as to reduce the difference ΔΘ to zero. Furthermore, in proportion to the magnitude of a lateral acceleration Gl, the suspension ECU 13 distributes the total demanded damping force F into a demanded damping force Fi on the turning-locus inner side and a demanded damping force Fo on the turning-locus outer side.
摘要:
A damping force control apparatus for a vehicle computes an actual roll angle Φ and an actual pitch angle θ in step S11, and computes a difference Δθ between a target pitch angle θa and the actual pitch angle θ in step S12. In step 13, the apparatus computes a total demanded damping force F which must be cooperatively generated by shock absorbers so as to decrease the computed Δθ to zero. In step S14, the apparatus distributes the total demanded damping force F in proportion to the magnitude of a lateral acceleration G such that a demanded damping force Fi on the turn-locus inner side becomes greater than a demanded damping force Fo on the turn-locus outer side. In step S15, the apparatus controls the damping force of each of the shock absorbers to the damping force Fi or the damping force Fo. Thus, throughout a turn, a posture changing behavior in which the turn-locus inner side serves as a fulcrum can be maintained.