摘要:
Human serum albumin obtained by gene manipulation techniques can be purified by a combination of specified steps in which a culture supernatant obtained from a human serum albumin-producing host is subjected to ultrafiltration, heat treatment, acid treatment and another ultrafiltration, followed by subsequent treatments with a cation exchanger, a hydrophobic chromatography carrier and an anion exchanger, and by salting-out to thereby obtain a pure form of human serum albumin which contains substantially no proteinous and polysaccharide contaminants, which is formulated into a pharmaceutical preparation. The thus obtained human serum albumin can further be purified by treating recombinant human serum albumin with a hydrophobic chromatography carrier at pH of 2 to 5 and a salt concentration of 0.4 to 1 and exposing the carrier to a pH of 6 to 8 and a salt concentration of 0.01 to 0.3 M, or treating the culture supernatant with boric acid or a salt thereof at pH 8 to 11 for 1 to 10 hours and recovering the supernatant. This process makes it possible to effeciently purify recombinant human serum albumin and to provide substantially pure human serum albumin which does not contain producer host-related substances and other contaminants and is sufficiently free from coloration.
摘要:
Human serum albumin obtained by gene manipulation techniques can be purified by a combination of specified steps in which a culture supernatant obtained from a human serum albumin-producing host is subjected to ultrafiltration, heat treatment, acid treatment and another ultrafiltration, followed by subsequent treatments with a cation exchanger, a hydrophobic chromatography carrier and an anion exchanger, and by salting-out to thereby obtain a pure form of human serum albumin which contains substantially no proteinous and polysaccharide contaminants, which is formulated into a pharmaceutical preparation. The thus obtained human serum albumin can further be purified by treating recombinant human serum albumin with a hydrophobic chromatography carrier at pH of 2 to 5 and a salt concentration of 0.4 to 1 and exposing the carrier to a pH of 6 to 8 and a salt concentration of 0.01 to 0.3 M, or treating the culture supernatant with boric acid or a salt thereof at pH 8 to 11 for 1 to 10 hours and recovering the supernatant. This process makes it possible to effeciently purify recombinant human serum albumin and to provide substantially pure human serum albumin which does not contain producer host-related substances and other contaminants and is sufficiently free from coloration.
摘要:
Human serum albumin obtained by gene manipulation techniques can be purified by a combination of specified steps in which a culture supernatant obtained from a human serum albumin-producing host is subjected to ultrafiltration, heat treatment, acid treatment and another ultrafiltration, followed by subsequent treatments with a cation exchanger, a hydrophobic chromatography carrier and an anion exchanger, and by salting-out to thereby obtain a pure form of human serum albumin which contains substantially no proteinous and polysaccharide contaminants, which is formulated into a pharmaceutical preparation. This process makes it possible to effeciently purify recombinant human serum albumin and to provide substantially pure human serum albumin which does not contain producer host-related substances and other contaminants and is sufficiently free from coloration.
摘要:
A communication apparatus as a node of a communication network comprises a reading device that reads management information representing management status of a dominated node stored in the dominated node connected via the communication network, a writing device that writes identification information for managing the dominated node into the dominated node when the management information does not include identification information of other dominating node, and a management device that manages the dominated node. The communication apparatus is complied with the IEEE 1394 Standard and capable of managing the other nodes on the communication network.
摘要:
A communication apparatus as a node of a communication network comprises a reading device that reads management information representing management status of a dominated node stored in the dominated node connected via the communication network, a writing device that writes identification information for managing the dominated node into the dominated node when the management information does not include identification information of other dominating node, and a management device that manages the dominated node. The communication apparatus is complied with the IEEE 1394 Standard and capable of managing the other nodes on the communication network.
摘要:
A communication apparatus as a node of a communication network comprises a reading device that reads management information representing management status of a dominated node stored in the dominated node connected via the communication network, a writing device that writes identification information for managing the dominated node into the dominated node when the management information does not include identification information of other dominating node, and a management device that manages the dominated node. The communication apparatus is complied with the IEEE1394 Standard and capable of managing the other nodes on the communication network.
摘要:
A data relaying unit includes a first input/output terminal for connection to a host device, a plurality of second input/output terminals for connection with a plurality of client devices, a quasi host device that, in accordance with an instruction from the host computer, controls direct data transmission between the client devices, and a connection switching device that selectively connects the individually second input/output terminals to either the first input/output terminal or the quasi host device. In accordance with an instruction from the host computer, the connection switching device connects the second input/output terminals of predetermined ones of the client devices to the quasi host device so as to permit direct data transmission between the predetermined client devices. Schedule for the data transmission between the client devices is managed by the quasi host device. The quasi host may monitor a condition of the data transmission between the client devices and inform the host device of presence/absence of a unusual condition or the like.