摘要:
A screw compressor includes a casing having low and high pressure spaces, a screw rotor inserted in a cylinder part of the casing, and a slide valve disclosed in the cylinder part. The screw rotor has a plurality of helical grooves forming a compression chamber. The slide valve is moveable along an axis of the screw rotor and faces an outer periphery of the screw rotor to form a discharge port to communicating the compression chamber with the high pressure space. Fluid in the low pressure space is sucked into the compression chamber, compressed, and then discharged to the high-pressure space when the screw rotor rotates. The slide valve includes a sealing projection located on a back surface of the slide valve opposite to the screw rotor, and separating the low and high pressure spaces from each other when the sealing projection is in slidable contact with the casing.
摘要:
A screw compressor includes a casing having low and high pressure spaces, a screw rotor inserted in a cylinder part of the casing, and a slide valve disclosed in the cylinder part. The screw rotor has a plurality of helical grooves forming a compression chamber. The slide valve is moveable along an axis of the screw rotor and faces an outer periphery of the screw rotor to form a discharge port to communicating the compression chamber with the high pressure space. Fluid in the low pressure space is sucked into the compression chamber, compressed, and then discharged to the high-pressure space when the screw rotor rotates. The slide valve includes a sealing projection located on a back surface of the slide valve opposite to the screw rotor, and separating the low and high pressure spaces from each other when the sealing projection is in slidable contact with the casing.
摘要:
A single-screw compressor includes a screw rotor, a cylinder wall in which the screw rotor is rotatably accommodated, a driving mechanism which variably drives the screw rotor according to a load, and a slide valve which is provided in a slide groove formed in the cylinder wall. The slide valve faces an outer circumferential surface of the screw rotor to be movable in an axial direction, and to adjust a discharge start position by being moved in the axial direction according to the operating capacity. A discharge side end surface of the slide valve extends in a direction corresponding to a screw land of the screw rotor to which the discharge side end surface faces when the slide valve is moved to a position corresponding to a part load operation state.
摘要:
A single-screw compressor includes a screw rotor, a cylinder wall in which the screw rotor is rotatably accommodated, a driving mechanism which variably drives the screw rotor according to a load, and a slide valve which is provided in a slide groove formed in the cylinder wall. The slide valve faces an outer circumferential surface of the screw rotor to be movable in an axial direction, and to adjust a discharge start position by being moved in the axial direction according to the operating capacity. A discharge side end surface of the slide valve extends in a direction corresponding to a screw land of the screw rotor to which the discharge side end surface faces when the slide valve is moved to a position corresponding to a part load operation state.
摘要:
A screw compressor includes a screw rotor, a gate rotor, a drive mechanism to rotate the screw rotor, a cylinder, a discharge port and an adjustment mechanism. The screw rotor has an outer periphery with a helical groove engaged with radially arranged gates of the gate rotor. First and second axial ends of the screw rotor form suction and discharge sides, respectively. The cylinder accommodates the screw rotor to define a compression chamber in the helical groove. Fluid in the coin cession chamber flows through the discharge port toward the discharge side of the screw rotor. The adjustment mechanism is configured to adjust a compression ratio of the compression chamber within a predetermined. range. The adjustment mechanism adjusts the compression ratio to a minimum compression ratio immediately before or when operation of the adjustment mechanism is stopped.
摘要:
A screw compressor includes a screw rotor, a gate rotor, a drive mechanism to rotate the screw rotor, a cylinder, a discharge port and an adjustment mechanism. The screw rotor has an outer periphery with a helical groove engaged with radially arranged gates of the gate rotor. First and second axial ends of the screw rotor form suction and discharge sides, respectively. The cylinder accommodates the screw rotor to define a compression chamber in the helical groove. Fluid in the compression chamber flows through the discharge port toward the discharge side of the screw rotor. The adjustment mechanism is configured to adjust a compression ratio of the compression chamber within a predetermined range. The adjustment mechanism adjusts the compression ratio to a minimum compression ratio immediately before or when operation of the adjustment mechanism is stopped.
摘要:
A screw compressor includes a screw rotor, a casing and an economizer circuit. The screw rotor has a plurality of helical grooves forming a compression chamber. The casing has a cylinder portion with the screw rotor inserted in the cylinder portion. The economizer circuit ejects configured to eject intermediate pressure refrigerant into a compression chamber in the course of compression. The economizer circuit includes a branch passage configured to branch the intermediate pressure refrigerant from a portion of a refrigerant circuit, a resonance space connected to a downstream side of the branch passage to retain the intermediate pressure refrigerant, and a resonance passage having an end communicating with an interior of the compression chamber and an other end communicating with an interior of the resonance space. The refrigerant circuit circulates refrigerant and performs a refrigeration cycle.
摘要:
A screw compressor includes a screw rotor, a casing and an economizer circuit. The screw rotor has a plurality of helical grooves forming a compression chamber. The casing has a cylinder portion with the screw rotor inserted in the cylinder portion. The economizer circuit ejects configured to eject intermediate pressure refrigerant into a compression chamber in the course of compression. The economizer circuit includes a branch passage configured to branch the intermediate pressure refrigerant from a portion of a refrigerant circuit, a resonance space connected to a downstream side of the branch passage to retain the intermediate pressure refrigerant, and a resonance passage having an end communicating with an interior of the compression chamber and an other end communicating with an interior of the resonance space. The refrigerant circuit circulates refrigerant and performs a refrigeration cycle.
摘要:
When a driving shaft rotates, a piston (9) revolves around the driving shaft in a cylinder room (6a) with supported by a swing bush (32) as a supporting point through a blade (31). Discharge ports (22) are formed in a front head (7) and a rear head (8) respectively and are disposed to be located in the proximity of the blade (31) and to communicate with a high pressure room. A semicircular portion of the discharge port (22) overlaps with the swing bush (32) and the cylinder (6). A pair of upper and lower cut parts (41) are each formed by cutting away an outer peripheral edge of the swing bush (32) and an inner peripheral edge of the cylinder (6) which are overlapped with the discharge port (22).
摘要:
A single-screw compressor includes a screw rotor including a spiral groove, a casing, and a gate rotor. The gate rotor includes a plurality of radial gates configured to mesh with the spiral groove. A clearance between one of the gates disposed in the spiral groove and a wall surface of a discharge side portion of the spiral groove is larger than a clearance between the gate disposed in the spiral groove and a wall surface of a suction side portion of the spiral groove. The wall surface of the discharge side portion of the spiral groove is a portion extending from a predetermined position of the spiral groove at a certain point in a compression phase to the terminal end of the spiral groove. The wall surface of the suction side portion of the spiral groove being a portion other than the discharge side portion.