摘要:
A portable radiographic imaging device and a portable X-ray source, that operate due to a first and second rechargeable battery respectively, can be accommodated in an accommodating case that is portable. While the accommodating case is being transported, a charging circuit provided in the accommodating case acquires electric power from a third rechargeable battery accommodated in the accommodating case, and charges the first and second rechargeable batteries. In this way, by accommodating the portable radiographic imaging device and the portable X-ray source in the accommodating case, the rechargeable batteries for the portable radiographic imaging device and the portable X-ray source are charged during transport.
摘要:
A portable radiographic apparatus system reduces the number of types of spare rechargeable battery. A first rechargeable battery for operation of a portable radiographic apparatus has the same shape and characteristics as a second rechargeable battery for operation of a portable X-ray source. The first rechargeable battery and the second rechargeable battery are interchangeable. When, in order capture images during a visit to an individual's home or a visit to a nursing facility, the portable radiographic apparatus and the portable X-ray source are taken to the visit destination, spare rechargeable batteries must be taken in case of trouble with the rechargeable batteries. Because the first rechargeable battery and the second rechargeable battery are interchangeable, by bringing either the first rechargeable battery or the second rechargeable battery, trouble can be addressed if it arises. In this way, the number of types of spare rechargeable battery can be reduced.
摘要:
A portable radiographic imaging device and a portable X-ray source, that operate due to a first and second rechargeable battery respectively, can be accommodated in an accommodating case that is portable. While the accommodating case is being transported, a charging circuit provided in the accommodating case acquires electric power from a third rechargeable battery accommodated in the accommodating case, and charges the first and second rechargeable batteries. In this way, by accommodating the portable radiographic imaging device and the portable X-ray source in the accommodating case, the rechargeable batteries for the portable radiographic imaging device and the portable X-ray source are charged during transport.
摘要:
A portable radiographic apparatus system reduces the number of types of spare rechargeable battery. A first rechargeable battery for operation of a portable radiographic apparatus has the same shape and characteristics as a second rechargeable battery for operation of a portable X-ray source. The first rechargeable battery and the second rechargeable battery are interchangeable. When, in order capture images during a visit to an individual's home or a visit to a nursing facility, the portable radiographic apparatus and the portable X-ray source are taken to the visit destination, spare rechargeable batteries must be taken in case of trouble with the rechargeable batteries. Because the first rechargeable battery and the second rechargeable battery are interchangeable, by bringing either the first rechargeable battery or the second rechargeable battery, trouble can be addressed if it arises. In this way, the number of types of spare rechargeable battery can be reduced.
摘要:
A diagnostic device system has a weight-reduced rechargeable battery. When a portable radiographic apparatus and a portable X-ray source are carried to and used for imaging at a private home or a care home, the portable radiographic apparatus and the portable X-ray source are loaded on an automobile. When the charge amount of rechargeable batteries for operation housed in the portable radiographic apparatus or the portable X-ray source loaded on the automobile is low, or when there are plural destinations and the charge amount of the rechargeable batteries becomes low, a rechargeable battery for charging mounted on the automobile is used to charge the rechargeable batteries for operation while traveling. Because the rechargeable batteries for operation are charged while traveling, a large number of rechargeable batteries for operation does not need to be charged in advance, whereby the weight of the rechargeable batteries for operation can be reduced.
摘要:
A diagnostic device system has a weight-reduced rechargeable battery. When a portable radiographic apparatus and a portable X-ray source are carried to and used for imaging at a private home or a care home, the portable radiographic apparatus and the portable X-ray source are loaded on an automobile. When the charge amount of rechargeable batteries for operation housed in the portable radiographic apparatus or the portable X-ray source loaded on the automobile is low, or when there are plural destinations and the charge amount of the rechargeable batteries becomes low, a rechargeable battery for charging mounted on the automobile is used to charge the rechargeable batteries for operation while traveling. Because the rechargeable batteries for operation are charged while traveling, a large number of rechargeable batteries for operation does not need to be charged in advance, whereby the weight of the rechargeable batteries for operation can be reduced.
摘要:
A portable radiographic imaging device including: a radiation detection panel including optoelectric conversion elements that convert irradiated radiation into an electrical signal; a signal processing substrate performing predetermined signal processing on the input electrical signal; a holding base provided between the radiation detection panel and the signal processing substrate and holding the signal processing substrate; a flexible substrate including a flexed portion, with one end of the flexible substrate being connected to the radiation detection panel and the other end of the flexible substrate being connected to the signal processing substrate; a casing in which the radiation detection panel, the signal processing substrate, the holding base and the flexible substrate are installed; and a contact avoidance portion formed at at least one of the signal processing substrate, the holding base or the casing such that contact of with the flexible substrate is avoided, is provided.
摘要:
A radiographic image capturing apparatus includes a housing and a radiation detector accommodated in the housing. The radiation detector includes a scintillator for converting radiation into visible light and photodiodes for converting the visible light into electric charges. If it is assumed that a temperature-dependent rate of change in sensitivity of the scintillator with respect to the radiation is represented by A [%/K] and a temperature-dependent rate of change in sensitivity of the photodiodes with respect to visible light is represented by B [%/K], a scintillator and photodiodes are selected having temperature-dependent rates of change A and B that satisfy the following inequality (1): −0.35 [%/K]
摘要:
A radiographic image capturing apparatus has a radiation source device including a radiation source, and a detector device including a radiation detector. At least one of the radiation source device and the detector device includes an electric power supply limiting unit for limiting supply of electric power. The electric power supply limiting unit has an activator/deactivator for determining activation or deactivation of supply of electric power between the radiation source device and the detector device, based on a present position of a corresponding one of the radiation source device and the detector device, or based on distance between the radiation source device and the detector device, and an electric power supply activator for enabling supply of electric power between the radiation source device and the detector device, if the activator/deactivator determines activation of supply of electric power between the radiation source device and the detector device.
摘要:
A radiographic image capture system includes a radiation detector, a radiation source, a generator, and a controller. The radiation detector includes plural pixels that generate electrical charges upon irradiation with radiation and that accumulate the electrical charges. The radiation source irradiates radiation onto the radiation detector. The generator reads the respective electrical charges accumulated in each of the pixels as electrical signals and generates image data. The controller causes the generator to read the electrical charges accumulated in each of the pixels at a specific frame rate in cases where continuous fluoroscopic imaging is performed, and, in a case in which a specific condition is satisfied, causes the radiation source to reduce the radiation amount being irradiated and causes the generator to perform thinned reading to read out the pixels one section at a time while extending the reading cycle of the electrical charges for each pixel.